1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-11-23 11:29:43 +01:00
tensorflow-haskell/tensorflow-mnist/app/Main.hs
Judah Jacobson d62c614695 Distinguish between "rendered" and "unrendered" Tensors. (#88)
Distinguish between "rendered" and "unrendered" Tensors.

There are now three types of `Tensor`:

- `Tensor Value a`: rendered value
- `Tensor Ref a`: rendered reference
- `Tensor Build a` : unrendered value

The extra bookkeeping makes it easier to track (and enforce) which tensors are
rendered or not.  For examples where this has been confusing in the past, see

With this change, pure ops look similar to before, returning `Tensor Build`
instead of `Tensor Value`.  "Stateful" (monadic) ops are unchanged.  For
example:

    add :: OneOf [..] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
    assign :: (MonadBuild m, TensorType t)
           => Tensor Ref t -> Tensor v'2 t -> m (Tensor Ref t)

The `gradients` function now requires that the variables over which it's
differentiating are pre-rendered:

    gradients :: (..., Rendered v2) => Tensor v1 a -> [Tensor v2 a]
              -> m [Tensor Value a]

(`Rendered v2` means that `v2` is either a `Ref` or a `Value`.)

Additionally, the implementation of `gradients` now takes care to render every
intermediate value when performing the reverse accumulation.  I suspect this
fixes an exponential blowup for complicated expressions.
2017-04-06 15:10:33 -07:00

150 lines
5.7 KiB
Haskell

-- Copyright 2016 TensorFlow authors.
--
-- Licensed under the Apache License, Version 2.0 (the "License");
-- you may not use this file except in compliance with the License.
-- You may obtain a copy of the License at
--
-- http://www.apache.org/licenses/LICENSE-2.0
--
-- Unless required by applicable law or agreed to in writing, software
-- distributed under the License is distributed on an "AS IS" BASIS,
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
import Control.Monad (zipWithM, when, forM_)
import Control.Monad.IO.Class (liftIO)
import Data.Int (Int32, Int64)
import Data.List (genericLength)
import qualified Data.Text.IO as T
import qualified Data.Vector as V
import qualified TensorFlow.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF
import TensorFlow.Examples.MNIST.InputData
import TensorFlow.Examples.MNIST.Parse
numPixels, numLabels :: Int64
numPixels = 28*28 :: Int64
numLabels = 10 :: Int64
-- | Create tensor with random values where the stddev depends on the width.
randomParam :: Int64 -> TF.Shape -> TF.Build (TF.Tensor TF.Build Float)
randomParam width (TF.Shape shape) =
(`TF.mul` stddev) <$> TF.truncatedNormal (TF.vector shape)
where
stddev = TF.scalar (1 / sqrt (fromIntegral width))
reduceMean :: TF.Tensor TF.Build Float -> TF.Tensor TF.Build Float
reduceMean xs = TF.mean xs (TF.scalar (0 :: Int32))
-- Types must match due to model structure.
type LabelType = Int32
data Model = Model {
train :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session ()
, infer :: TF.TensorData Float -- ^ images
-> TF.Session (V.Vector LabelType) -- ^ predictions
, errorRate :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session Float
}
createModel :: TF.Build Model
createModel = do
-- Use -1 batch size to support variable sized batches.
let batchSize = -1
-- Inputs.
images <- TF.placeholder [batchSize, numPixels]
-- Hidden layer.
let numUnits = 500
hiddenWeights <-
TF.initializedVariable =<< randomParam numPixels [numPixels, numUnits]
hiddenBiases <- TF.zeroInitializedVariable [numUnits]
let hiddenZ = (images `TF.matMul` hiddenWeights) `TF.add` hiddenBiases
let hidden = TF.relu hiddenZ
-- Logits.
logitWeights <-
TF.initializedVariable =<< randomParam numUnits [numUnits, numLabels]
logitBiases <- TF.zeroInitializedVariable [numLabels]
let logits = (hidden `TF.matMul` logitWeights) `TF.add` logitBiases
predict <- TF.render $ TF.cast $
TF.argMax (TF.softmax logits) (TF.scalar (1 :: LabelType))
-- Create training action.
labels <- TF.placeholder [batchSize]
let labelVecs = TF.oneHot labels (fromIntegral numLabels) 1 0
loss =
reduceMean $ fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases]
grads <- TF.gradients loss params
let lr = TF.scalar 0.00001
applyGrad param grad = TF.assign param $ param `TF.sub` (lr `TF.mul` grad)
trainStep <- TF.group =<< zipWithM applyGrad params grads
let correctPredictions = TF.equal predict labels
errorRateTensor <- TF.render $ 1 - reduceMean (TF.cast correctPredictions)
return Model {
train = \imFeed lFeed -> TF.runWithFeeds_ [
TF.feed images imFeed
, TF.feed labels lFeed
] trainStep
, infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict
, errorRate = \imFeed lFeed -> TF.unScalar <$> TF.runWithFeeds [
TF.feed images imFeed
, TF.feed labels lFeed
] errorRateTensor
}
main :: IO ()
main = TF.runSession $ do
-- Read training and test data.
trainingImages <- liftIO (readMNISTSamples =<< trainingImageData)
trainingLabels <- liftIO (readMNISTLabels =<< trainingLabelData)
testImages <- liftIO (readMNISTSamples =<< testImageData)
testLabels <- liftIO (readMNISTLabels =<< testLabelData)
-- Create the model.
model <- TF.build createModel
-- Functions for generating batches.
let encodeImageBatch xs =
TF.encodeTensorData [genericLength xs, numPixels]
(fromIntegral <$> mconcat xs)
let encodeLabelBatch xs =
TF.encodeTensorData [genericLength xs]
(fromIntegral <$> V.fromList xs)
let batchSize = 100
let selectBatch i xs = take batchSize $ drop (i * batchSize) (cycle xs)
-- Train.
forM_ ([0..1000] :: [Int]) $ \i -> do
let images = encodeImageBatch (selectBatch i trainingImages)
labels = encodeLabelBatch (selectBatch i trainingLabels)
train model images labels
when (i `mod` 100 == 0) $ do
err <- errorRate model images labels
liftIO $ putStrLn $ "training error " ++ show (err * 100)
liftIO $ putStrLn ""
-- Test.
testErr <- errorRate model (encodeImageBatch testImages)
(encodeLabelBatch testLabels)
liftIO $ putStrLn $ "test error " ++ show (testErr * 100)
-- Show some predictions.
testPreds <- infer model (encodeImageBatch testImages)
liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do
putStrLn ""
T.putStrLn $ drawMNIST $ testImages !! i
putStrLn $ "expected " ++ show (testLabels !! i)
putStrLn $ " got " ++ show (testPreds V.! i)