mirror of
https://github.com/tensorflow/haskell.git
synced 2025-01-11 19:39:49 +01:00
Haskell bindings for TensorFlow
0c8d41250a
This change allows us to reenable the rest of the ResourceHandle ops, and future-proofs us against more being added. It removes the custom logic that assumed there was a "dtype" attribute to guess what the type parameter is (which wasn't true in general.) When we switch to ResourceHandle (e.g., for queues and variables) we can add parameters to the wrapper types like "Queue" on a case-by-case basis. |
||
---|---|---|
ci_build | ||
docker | ||
docs/haddock | ||
google-shim | ||
tensorflow | ||
tensorflow-core-ops | ||
tensorflow-logging | ||
tensorflow-mnist | ||
tensorflow-mnist-input-data | ||
tensorflow-nn | ||
tensorflow-opgen | ||
tensorflow-ops | ||
tensorflow-proto | ||
tensorflow-queue | ||
tensorflow-records | ||
tensorflow-records-conduit | ||
tensorflow-test | ||
third_party | ||
tools | ||
.gitignore | ||
.gitmodules | ||
CONTRIBUTING.md | ||
LICENSE | ||
README.md | ||
stack.yaml |
The tensorflow-haskell package provides Haskell bindings to TensorFlow.
This is not an official Google product.
Documentation
https://tensorflow.github.io/haskell/haddock/
TensorFlow.Core is a good place to start.
Examples
Neural network model for the MNIST dataset: code
Toy example of a linear regression model (full code):
import Control.Monad (replicateM, replicateM_, zipWithM)
import System.Random (randomIO)
import Test.HUnit (assertBool)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF
main :: IO ()
main = do
-- Generate data where `y = x*3 + 8`.
xData <- replicateM 100 randomIO
let yData = [x*3 + 8 | x <- xData]
-- Fit linear regression model.
(w, b) <- fit xData yData
assertBool "w == 3" (abs (3 - w) < 0.001)
assertBool "b == 8" (abs (8 - b) < 0.001)
fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
-- Create tensorflow constants for x and y.
let x = TF.vector xData
y = TF.vector yData
-- Create scalar variables for slope and intercept.
w <- TF.build (TF.initializedVariable 0)
b <- TF.build (TF.initializedVariable 0)
-- Define the loss function.
let yHat = (x `TF.mul` w) `TF.add` b
loss = TF.square (yHat `TF.sub` y)
-- Optimize with gradient descent.
trainStep <- TF.build (gradientDescent 0.001 loss [w, b])
replicateM_ 1000 (TF.run trainStep)
-- Return the learned parameters.
(TF.Scalar w', TF.Scalar b') <- TF.run (w, b)
return (w', b')
gradientDescent :: Float
-> TF.Tensor TF.Value Float
-> [TF.Tensor TF.Ref Float]
-> TF.Build TF.ControlNode
gradientDescent alpha loss params = do
let applyGrad param grad =
TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad))
TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params
Installation Instructions
Build with Docker on Linux
As an expedient we use docker for building. Once you have docker working, the following commands will compile and run the tests.
git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test
There is also a demo application:
cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main
Build on Mac OS X
The following instructions were verified with Mac OS X El Capitan.
-
Install dependencies via Homebrew:
brew install protobuf brew install snappy
-
Install the TensorFlow library on your machine:
curl https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-cpu-darwin-x86_64-1.0.0-rc0.tar.gz > libtensorflow.tar.gz tar zxf libtensorflow.tar.gz -C /usr/local mv /usr/local/lib/libtensorflow.so /usr/local/lib/libtensorflow.dylib install_name_tool -id libtensorflow.dylib /usr/local/lib/libtensorflow.dylib rm libtensorflow.tar.gz
-
Run stack:
stack test