-- Copyright 2016 TensorFlow authors. -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. {-# LANGUAGE OverloadedLists #-} import Control.Monad (zipWithM, when, forM, forM_) import Control.Monad.IO.Class (liftIO) import Data.Int (Int32, Int64) import qualified Data.Text.IO as T import qualified Data.Vector as V import qualified TensorFlow.ControlFlow as TF import qualified TensorFlow.Build as TF import qualified TensorFlow.Ops as TF import qualified TensorFlow.Session as TF import qualified TensorFlow.Tensor as TF import qualified TensorFlow.Types as TF import qualified TensorFlow.Gradient as TF import TensorFlow.Examples.MNIST.InputData import TensorFlow.Examples.MNIST.Parse numPixels = 28^2 :: Int64 numLabels = 10 :: Int64 -- | Create tensor with random values where the stddev depends on the width. randomParam :: Int64 -> TF.Shape -> TF.Build (TF.Tensor TF.Value Float) randomParam width (TF.Shape shape) = (* stddev) <$> TF.truncatedNormal (TF.vector shape) where stddev = TF.scalar (1 / sqrt (fromIntegral width)) -- Types must match due to model structure (sparseToDense requires -- index types to match) type LabelType = Int32 type BatchSize = Int32 -- | Convert scalar labels to one-hot vectors. labelClasses :: TF.Tensor TF.Value LabelType -> LabelType -> BatchSize -> TF.Tensor TF.Value Float labelClasses labels numClasses batchSize = let indices = TF.range 0 (TF.scalar batchSize) 1 concated = TF.concat 1 [TF.expandDims indices 1, TF.expandDims labels 1] in TF.sparseToDense concated (TF.constant [2] [batchSize, numClasses]) 1 {- ON value -} 0 {- default (OFF) value -} -- | Fraction of elements that differ between two vectors. errorRate :: Eq a => V.Vector a -> V.Vector a -> Double errorRate xs ys = fromIntegral (len - numCorrect) / fromIntegral len where numCorrect = V.length $ V.filter id $ V.zipWith (==) xs ys len = V.length xs data Model = Model { train :: TF.TensorData Float -- ^ images -> TF.TensorData LabelType -> TF.Session () , infer :: TF.TensorData Float -- ^ images -> TF.Session (V.Vector LabelType) -- ^ predictions } createModel :: Int64 -> TF.Build Model createModel batchSize = do -- Inputs. images <- TF.placeholder [batchSize, numPixels] -- Hidden layer. let numUnits = 500 hiddenWeights <- TF.initializedVariable =<< randomParam numPixels [numPixels, numUnits] hiddenBiases <- TF.zeroInitializedVariable [numUnits] let hiddenZ = (images `TF.matMul` hiddenWeights) `TF.add` hiddenBiases let hidden = TF.relu hiddenZ -- Logits. logitWeights <- TF.initializedVariable =<< randomParam numUnits [numUnits, numLabels] logitBiases <- TF.zeroInitializedVariable [numLabels] let logits = (hidden `TF.matMul` logitWeights) `TF.add` logitBiases predict <- TF.render $ TF.cast $ TF.argMax (TF.softmax logits) (TF.scalar (1 :: LabelType)) -- Create training action. labels <- TF.placeholder [batchSize] let labelVecs = labelClasses labels 10 (fromIntegral batchSize) loss = fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases] grads <- TF.gradients loss params let lr = TF.scalar $ 0.001 / fromIntegral batchSize applyGrad param grad = TF.assign param $ param `TF.sub` (lr * grad) trainStep <- TF.group =<< zipWithM applyGrad params grads return Model { train = \imFeed lFeed -> TF.runWithFeeds_ [ TF.feed images imFeed , TF.feed labels lFeed ] trainStep , infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict } main = TF.runSession $ do -- Read training and test data. trainingImages <- liftIO (readMNISTSamples =<< trainingImageData) trainingLabels <- liftIO (readMNISTLabels =<< trainingLabelData) testImages <- liftIO (readMNISTSamples =<< testImageData) testLabels <- liftIO (readMNISTLabels =<< testLabelData) let batchSize = 100 :: Int64 -- Create the model. model <- TF.build $ createModel batchSize -- Helpers for generate batches. let selectBatch i xs = take size $ drop (i * size) $ cycle xs where size = fromIntegral batchSize let getImageBatch i xs = TF.encodeTensorData [batchSize, numPixels] $ fromIntegral <$> mconcat (selectBatch i xs) let getExpectedLabelBatch i xs = fromIntegral <$> V.fromList (selectBatch i xs) -- Train. forM_ ([0..1000] :: [Int]) $ \i -> do let images = getImageBatch i trainingImages labels = getExpectedLabelBatch i trainingLabels train model images (TF.encodeTensorData [batchSize] labels) when (i `mod` 100 == 0) $ do preds <- infer model images liftIO $ putStrLn $ "training error " ++ show (errorRate preds labels * 100) liftIO $ putStrLn "" -- Test. let numTestBatches = length testImages `div` fromIntegral batchSize testPreds <- fmap mconcat $ forM [0..numTestBatches] $ \i -> do infer model (getImageBatch i testImages) let testExpected = fromIntegral <$> V.fromList testLabels liftIO $ putStrLn $ "test error " ++ show (errorRate testPreds testExpected * 100) -- Show some predictions. liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do putStrLn "" T.putStrLn $ drawMNIST $ testImages !! i putStrLn $ "expected " ++ show (testLabels !! i) putStrLn $ " got " ++ show (testPreds V.! i)