![Build Status](https://storage.googleapis.com/tensorflow-haskell-kokoro-build-badges/github.png) The tensorflow-haskell package provides Haskell bindings to [TensorFlow](https://www.tensorflow.org/). This is not an official Google product. # Documentation https://tensorflow.github.io/haskell/haddock/ [TensorFlow.Core](https://tensorflow.github.io/haskell/haddock/tensorflow/TensorFlow-Core.html) is a good place to start. # Examples Neural network model for the MNIST dataset: [code](tensorflow-mnist/app/Main.hs) Toy example of a linear regression model ([full code](tensorflow-ops/tests/RegressionTest.hs)): ```haskell import Control.Monad (replicateM, replicateM_) import System.Random (randomIO) import Test.HUnit (assertBool) import qualified TensorFlow.Core as TF import qualified TensorFlow.GenOps.Core as TF import qualified TensorFlow.Minimize as TF import qualified TensorFlow.Ops as TF hiding (initializedVariable) import qualified TensorFlow.Variable as TF main :: IO () main = do -- Generate data where `y = x*3 + 8`. xData <- replicateM 100 randomIO let yData = [x*3 + 8 | x <- xData] -- Fit linear regression model. (w, b) <- fit xData yData assertBool "w == 3" (abs (3 - w) < 0.001) assertBool "b == 8" (abs (8 - b) < 0.001) fit :: [Float] -> [Float] -> IO (Float, Float) fit xData yData = TF.runSession $ do -- Create tensorflow constants for x and y. let x = TF.vector xData y = TF.vector yData -- Create scalar variables for slope and intercept. w <- TF.initializedVariable 0 b <- TF.initializedVariable 0 -- Define the loss function. let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b loss = TF.square (yHat `TF.sub` y) -- Optimize with gradient descent. trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b] replicateM_ 1000 (TF.run trainStep) -- Return the learned parameters. (TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b) return (w', b') ``` # Installation Instructions Note: building this repository with `stack` requires version `1.4.0` or newer. Check your stack version with `stack --version` in a terminal. ## Build with Docker on Linux As an expedient we use [docker](https://www.docker.com/) for building. Once you have docker working, the following commands will compile and run the tests. ``` git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell cd tensorflow-haskell IMAGE_NAME=tensorflow/haskell:v0 docker build -t $IMAGE_NAME docker # TODO: move the setup step to the docker script. stack --docker --docker-image=$IMAGE_NAME setup stack --docker --docker-image=$IMAGE_NAME test ``` There is also a demo application: ``` cd tensorflow-mnist stack --docker --docker-image=$IMAGE_NAME build --exec Main ``` ### Stack + Docker + GPU If you want to use GPU you can do: ``` IMAGE_NAME=tensorflow/haskell:1.9.0-gpu docker build -t $IMAGE_NAME docker/gpu ``` ### Using nvidia-docker version 2 See [Nvidia docker 2 install instructions](https://github.com/nvidia/nvidia-docker/wiki/Installation-(version-2.0)) ``` stack --docker --docker-image=$IMAGE_NAME setup stack --docker --docker-run-args "--runtime=nvidia" --docker-image=$IMAGE_NAME test ``` ### Using nvidia-docker classic Stack needs to use `nvidia-docker` instead of the normal `docker` for GPU support. We must wrap 'docker' with a script. This script will shadow the normal `docker` command. ``` ln -s `pwd`/tools/nvidia-docker-wrapper.sh /docker stack --docker --docker-image=$IMAGE_NAME setup stack --docker --docker-image=$IMAGE_NAME test ``` ## Build on macOS Run the [install_macos_dependencies.sh](./tools/install_macos_dependencies.sh) script in the `tools/` directory. The script installs dependencies via [Homebrew](https://brew.sh/) and then downloads and installs the TensorFlow library on your machine under `/usr/local`. After running the script to install system dependencies, build the project with stack: stack test ## Build on NixOS The `shell.nix` provides an environment containing the necessary dependencies. To build, run: $ stack --nix build or alternatively you can run $ nix-shell to enter the environment and build the project. Note, that it is an emulation of common Linux environment rather than full-featured Nix package expression. No exportable Nix package will appear, but local development is possible. ## Installation on CentOS [Xiaokui Shu (@subbyte)](https://github.com/subbyte) maintains [separate instructions for installation on CentOS](https://github.com/subbyte/haskell-learn/blob/master/tensorflow_setup.md). # Related Projects ## Statically validated tensor shapes https://github.com/helq/tensorflow-haskell-deptyped is experimenting with using dependent types to statically validate tensor shapes. May be merged with this repository in the future. Example: ```haskell {-# LANGUAGE DataKinds, ScopedTypeVariables #-} import Data.Maybe (fromJust) import Data.Vector.Sized (Vector, fromList) import TensorFlow.DepTyped test :: IO (Vector 8 Float) test = runSession $ do (x :: Placeholder "x" '[4,3] Float) <- placeholder let elems1 = fromJust $ fromList [1,2,3,4,1,2] elems2 = fromJust $ fromList [5,6,7,8] (w :: Tensor '[3,2] '[] Build Float) = constant elems1 (b :: Tensor '[4,1] '[] Build Float) = constant elems2 y = (x `matMul` w) `add` b -- y shape: [4,2] (b shape is [4.1] but `add` broadcasts it to [4,2]) let (inputX :: TensorData "x" [4,3] Float) = encodeTensorData . fromJust $ fromList [1,2,3,4,1,0,7,9,5,3,5,4] runWithFeeds (feed x inputX :~~ NilFeedList) y main :: IO () main = test >>= print ``` # License This project is licensed under the terms of the [Apache 2.0 license](LICENSE).