-- | Simple linear regression example for the README. import Control.Monad (replicateM, replicateM_, zipWithM) import System.Random (randomIO) import Test.HUnit (assertBool) import qualified TensorFlow.Core as TF import qualified TensorFlow.GenOps.Core as TF import qualified TensorFlow.Gradient as TF import qualified TensorFlow.Ops as TF main :: IO () main = do -- Generate data where `y = x*3 + 8`. xData <- replicateM 100 randomIO let yData = [x*3 + 8 | x <- xData] -- Fit linear regression model. (w, b) <- fit xData yData assertBool "w == 3" (abs (3 - w) < 0.001) assertBool "b == 8" (abs (8 - b) < 0.001) fit :: [Float] -> [Float] -> IO (Float, Float) fit xData yData = TF.runSession $ do -- Create tensorflow constants for x and y. let x = TF.vector xData y = TF.vector yData -- Create scalar variables for slope and intercept. w <- TF.build (TF.initializedVariable 0) b <- TF.build (TF.initializedVariable 0) -- Define the loss function. let yHat = (x `TF.mul` w) `TF.add` b loss = TF.square (yHat `TF.sub` y) -- Optimize with gradient descent. trainStep <- TF.build (gradientDescent 0.001 loss [w, b]) replicateM_ 1000 (TF.run trainStep) -- Return the learned parameters. (TF.Scalar w', TF.Scalar b') <- TF.run (w, b) return (w', b') gradientDescent :: Float -> TF.Tensor TF.Value Float -> [TF.Tensor TF.Ref Float] -> TF.Build TF.ControlNode gradientDescent alpha loss params = do let applyGrad param grad = TF.assign param (param `TF.sub` (TF.scalar alpha `TF.mul` grad)) TF.group =<< zipWithM applyGrad params =<< TF.gradients loss params