Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- sigmoidCrossEntropyWithLogits :: (MonadBuild m, OneOf '[Float, Double] a, TensorType a, Num a) => Tensor Value a -> Tensor Value a -> m (Tensor Value a)
Documentation
sigmoidCrossEntropyWithLogits Source #
:: (MonadBuild m, OneOf '[Float, Double] a, TensorType a, Num a) | |
=> Tensor Value a | logits |
-> Tensor Value a | targets |
-> m (Tensor Value a) |
Computes sigmoid cross entropy given logits
.
Measures the probability error in discrete classification tasks in which each class is independent and not mutually exclusive. For instance, one could perform multilabel classification where a picture can contain both an elephant and a dog at the same time.
For brevity, let `x = logits`, `z = targets`. The logistic loss is
z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 (1 + exp(-x))) + (1 - z) * -log(exp(-x) (1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z * log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x + log(1 + exp(-x)) = x - x * z + log(1 + exp(-x))
For x < 0, to avoid overflow in exp(-x), we reformulate the above
x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x)) = - x * z + log(1 + exp(x))
Hence, to ensure stability and avoid overflow, the implementation uses this equivalent formulation
max(x, 0) - x * z + log(1 + exp(-abs(x)))
logits
and targets
must have the same type and shape.