-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Friendly layer around TensorFlow bindings. -- -- Please see README.md @package tensorflow-ops @version 0.1.0.0 -- | This module contains definitions for some built-in TensorFlow -- operations. -- -- Note that certain, "stateful" ops like <a>variable</a> and -- <a>assign</a> return a <a>Build</a> action (e.g., <tt>Build (Tensor -- Ref a)</tt> instead of a pure value; the returned <a>Tensor</a>s are -- always rendered in the current <a>Build</a> context. This approach -- helps us avoid problems with inlining or common subexpression -- elimination, by writing -- -- <pre> -- do -- v <- variable [] -- w <- assign v 3 -- render $ w * w -- </pre> -- -- instead of -- -- <pre> -- let -- v = variable [] -- w = assign v 3 -- in w * w -- </pre> -- -- since the latter could be reasonably transformed by the compiler into -- (or vice versa) -- -- <pre> -- let -- v = variable [] -- w = assign v 3 -- w' = assign v 3 -- in w * w' -- </pre> -- -- Ops should return a <a>Build</a> action if their original -- <tt>OpDef</tt> marks them as stateful, or if they take any Refs as -- input. (This mirrors the rules that TensorFlow uses to avoid common -- subexpression elimination.) module TensorFlow.Ops -- | Returns x + y element-wise. -- -- <ul> -- <li>NOTE*: <tt>Add</tt> supports broadcasting. <tt>AddN</tt> does not. -- More about broadcasting <a>here</a></li> -- </ul> add :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * ByteString ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *)))))))))))) t) => Tensor v1 t -> Tensor v2 t -> Tensor Value t -- | Computes the absolute value of a tensor. -- -- Given a tensor <tt>x</tt>, this operation returns a tensor containing -- the absolute value of each element in <tt>x</tt>. For example, if x is -- an input element and y is an output element, this operation computes -- \(y = |x|\). abs :: (TensorType t, OneOf ((:) * Int32 ((:) * Int64 ((:) * Word16 ((:) * Double ((:) * Float ([] *)))))) t) => Tensor v1 t -> Tensor Value t -- | Add all input tensors element wise. addN :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))))) t) => [Tensor v1 t] -> Tensor Value t -- | Returns the index with the largest value across dimensions of a -- tensor. argMax :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))))) t, TensorType tidx, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tidx) => Tensor v1 t -> Tensor v2 tidx -> Tensor Value Int64 assign :: TensorType a => Tensor Ref a -> Tensor v a -> Build (Tensor Ref a) -- | Return the reduction indices for computing gradients of s0 op s1 with -- broadcast. -- -- This is typically used by gradient computations for a broadcasting -- operation. broadcastGradientArgs :: (TensorType t, OneOf ((:) * Int32 ((:) * Int64 ([] *))) t) => Tensor v1 t -> Tensor v2 t -> (Tensor Value t, Tensor Value t) -- | Cast x of type SrcT to y of DstT. cast :: (TensorType dstT, TensorType srcT) => Tensor v1 srcT -> Tensor Value dstT -- | Concatenates tensors along one dimension. concat :: TensorType t => Tensor v1 Int32 -> [Tensor v2 t] -> Tensor Value t -- | Create a constant tensor. -- -- The values should be in row major order, e.g., -- -- element 0: index (0, ..., 0) element 1: index (0, ..., 1) ... constant :: TensorType a => Shape -> [a] -> Tensor Value a expandDims :: (TensorType t) => Tensor v1 t -> Tensor v2 Int32 -> Tensor Value t -- | Creates a variable initialized to the given value. Initialization -- happens next time session runs. initializedVariable :: TensorType a => Tensor Value a -> Build (Tensor Ref a) -- | Creates a zero-initialized variable with the given shape. zeroInitializedVariable :: (TensorType a, Num a) => Shape -> Build (Tensor Ref a) -- | Creates a tensor filled with a scalar value. -- -- This operation creates a tensor of shape <tt>dims</tt> and fills it -- with <a>value</a>. -- -- For example: -- -- ```prettyprint # Output tensor has shape [2, 3]. fill([2, 3], 9) -- ==> [[9, 9, 9] [9, 9, 9]] ``` fill :: TensorType t => Tensor v1 Int32 -> Tensor v2 t -> Tensor Value t -- | Multiply the matrix "a" by the matrix "b". -- -- The inputs must be two-dimensional matrices and the inner dimension of -- "a" (after being transposed if transpose_a is true) must match the -- outer dimension of "b" (after being transposed if transposed_b is -- true). -- -- <ul> -- <li>Note*: The default kernel implementation for MatMul on GPUs uses -- cublas.</li> -- </ul> matMul :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int32 ((:) * Word16 ((:) * Double ((:) * Float ([] *))))))) t) => Tensor v1 t -> Tensor v2 t -> Tensor Value t matTranspose :: TensorType a => Tensor v a -> Tensor Value a -- | Returns x * y element-wise. -- -- <ul> -- <li>NOTE*: <tt>Mul</tt> supports broadcasting. More about broadcasting -- <a>here</a></li> -- </ul> mul :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))))) t) => Tensor v1 t -> Tensor v2 t -> Tensor Value t -- | Computes numerical negative value element-wise. -- -- I.e., \(y = -x\). neg :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int32 ((:) * Int64 ((:) * Word16 ((:) * Double ((:) * Float ([] *)))))))) t) => Tensor v1 t -> Tensor Value t -- | Packs a list of <tt>N</tt> rank-<tt>R</tt> tensors into one -- rank-`(R+1)` tensor. -- -- Packs the <tt>N</tt> tensors in <tt>values</tt> into a tensor with -- rank one higher than each tensor in <tt>values</tt>, by packing them -- along the <tt>axis</tt> dimension. Given a list of tensors of shape -- `(A, B, C)`; -- -- if `axis == 0` then the <tt>output</tt> tensor will have the shape -- `(N, A, B, C)`. if `axis == 1` then the <tt>output</tt> tensor will -- have the shape `(A, N, B, C)`. Etc. -- -- For example: -- -- ```prettyprint # <tt>x</tt> is [1, 4] # <tt>y</tt> is [2, 5] # -- <tt>z</tt> is [3, 6] pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # -- Pack along first dim. pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, -- 6]] ``` -- -- This is the opposite of <a>unpack</a>. pack :: TensorType t => [Tensor v1 t] -> Tensor Value t placeholder :: TensorType a => Shape -> Build (Tensor Value a) -- | Creates a sequence of integers. -- -- This operation creates a sequence of integers that begins at -- <tt>start</tt> and extends by increments of <tt>delta</tt> up to but -- not including <tt>limit</tt>. -- -- For example: -- -- ``` # <tt>start</tt> is 3 # <tt>limit</tt> is 18 # <tt>delta</tt> is 3 -- tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] ``` range :: (TensorType tidx, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tidx) => Tensor v1 tidx -> Tensor v2 tidx -> Tensor v3 tidx -> Tensor Value tidx -- | Helper function for reduction ops (translation of -- math_ops.reduced_shape). reducedShape :: (OneOf '[Int32, Int64] t1, OneOf '[Int32, Int64] t2) => Tensor v1 t1 -> Tensor v2 t2 -> Tensor Value Int32 -- | Computes rectified linear: `max(features, 0)`. relu :: (TensorType t, OneOf ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))) t) => Tensor v1 t -> Tensor Value t -- | Computes rectified linear gradients for a Relu operation. reluGrad :: (TensorType t, OneOf ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))) t) => Tensor v1 t -> Tensor v2 t -> Tensor Value t -- | Reshapes a tensor. -- -- Given <tt>tensor</tt>, this operation returns a tensor that has the -- same values as <tt>tensor</tt> with shape <a>shape</a>. -- -- If one component of <a>shape</a> is the special value -1, the size of -- that dimension is computed so that the total size remains constant. In -- particular, a <a>shape</a> of `[-1]` flattens into 1-D. At most one -- component of <a>shape</a> can be -1. -- -- If <a>shape</a> is 1-D or higher, then the operation returns a tensor -- with shape <a>shape</a> filled with the values of <tt>tensor</tt>. In -- this case, the number of elements implied by <a>shape</a> must be the -- same as the number of elements in <tt>tensor</tt>. -- -- For example: -- -- ```prettyprint # tensor <tt>t</tt> is [1, 2, 3, 4, 5, 6, 7, 8, 9] # -- tensor <tt>t</tt> has shape [9] reshape(t, [3, 3]) ==> [[1, 2, 3], -- [4, 5, 6], [7, 8, 9]] -- -- # tensor <tt>t</tt> is [[[1, 1], [2, 2]], # [[3, 3], [4, 4]]] # tensor -- <tt>t</tt> has shape [2, 2, 2] reshape(t, [2, 4]) ==> [[1, 1, 2, -- 2], [3, 3, 4, 4]] -- -- # tensor <tt>t</tt> is [[[1, 1, 1], # [2, 2, 2]], # [[3, 3, 3], # [4, -- 4, 4]], # [[5, 5, 5], # [6, 6, 6]]] # tensor <tt>t</tt> has shape [3, -- 2, 3] # pass '[-1]' to flatten <tt>t</tt> reshape(t, [-1]) ==> [1, -- 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6] -- -- # -1 can also be used to infer the shape -- -- # -1 is inferred to be 9: reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, -- 2, 3, 3, 3], [4, 4, 4, 5, 5, 5, 6, 6, 6]] # -1 is inferred to be 2: -- reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3], [4, 4, 4, 5, -- 5, 5, 6, 6, 6]] # -1 is inferred to be 3: reshape(t, [ 2, -1, 3]) -- ==> [[[1, 1, 1], [2, 2, 2], [3, 3, 3]], [[4, 4, 4], [5, 5, 5], [6, -- 6, 6]]] -- -- # tensor <tt>t</tt> is [7] # shape `[]` reshapes to a scalar -- reshape(t, []) ==> 7 ``` reshape :: (TensorType t, TensorType tshape, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tshape) => Tensor v1 t -> Tensor v2 tshape -> Tensor Value t -- | Restore a tensor's value from a checkpoint file. restore :: TensorType a => ByteString -> Tensor Ref a -> Build ControlNode -- | Restore a tensor's value from a checkpoint file. -- -- This version allows restoring from a checkpoint file that uses a -- different tensor name than the variable. restoreFromName :: TensorType a => ByteString -> ByteString -> Tensor Ref a -> Build ControlNode save :: TensorType a => ByteString -> [Tensor v a] -> Build ControlNode -- | Create a constant scalar. scalar :: TensorType a => a -> Tensor Value a shape :: (TensorType t) => Tensor v1 t -> Tensor Value Int32 -- | Returns an element-wise indication of the sign of a number. -- -- `y = sign(x) = -1` if `x <a>0 if `x == 0`; 1 if `x</a> 0`. -- -- For complex numbers, `y = sign(x) = x / |x|` if `x != 0`, otherwise `y -- = 0`. sign :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int32 ((:) * Int64 ((:) * Word16 ((:) * Double ((:) * Float ([] *)))))))) t) => Tensor v1 t -> Tensor Value t -- | Returns the size of a tensor. -- -- This operation returns an integer representing the number of elements -- in <tt>input</tt>. -- -- For example: -- -- ```prettyprint # <tt>t</tt> is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], -- [4, 4, 4]]]] size(t) ==> 12 ``` size :: (TensorType t, TensorType out_type, OneOf ((:) * Int32 ((:) * Int64 ([] *))) out_type) => Tensor v1 t -> Tensor Value out_type -- | Computes softmax activations. -- -- For each batch <tt>i</tt> and class <tt>j</tt> we have -- -- softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j])) softmax :: (TensorType t, OneOf ((:) * Word16 ((:) * Double ((:) * Float ([] *)))) t) => Tensor v1 t -> Tensor Value t -- | Computes softmax cross entropy cost and gradients to backpropagate. -- -- Inputs are the logits, not probabilities. softmaxCrossEntropyWithLogits :: (TensorType t, OneOf ((:) * Word16 ((:) * Double ((:) * Float ([] *)))) t) => Tensor v1 t -> Tensor v2 t -> (Tensor Value t, Tensor Value t) -- | Converts a sparse representation into a dense tensor. -- -- Builds an array <tt>dense</tt> with shape <tt>output_shape</tt> such -- that -- -- ```prettyprint # If sparse_indices is scalar dense[i] = (i == -- sparse_indices ? sparse_values : default_value) -- -- # If sparse_indices is a vector, then for each i -- dense[sparse_indices[i]] = sparse_values[i] -- -- # If sparse_indices is an n by d matrix, then for each i in [0, n) -- dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = -- sparse_values[i] ``` -- -- All other values in <tt>dense</tt> are set to <tt>default_value</tt>. -- If <tt>sparse_values</tt> is a scalar, all sparse indices are set to -- this single value. -- -- Indices should be sorted in lexicographic order, and indices must not -- contain any repeats. If <tt>validate_indices</tt> is true, these -- properties are checked during execution. sparseToDense :: (TensorType t, TensorType tindices, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tindices) => Tensor v1 tindices -> Tensor v2 tindices -> Tensor v3 t -> Tensor v4 t -> Tensor Value t -- | Returns x - y element-wise. -- -- <ul> -- <li>NOTE*: <tt>Sub</tt> supports broadcasting. More about broadcasting -- <a>here</a></li> -- </ul> sub :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int32 ((:) * Int64 ((:) * Word16 ((:) * Double ((:) * Float ([] *)))))))) t) => Tensor v1 t -> Tensor v2 t -> Tensor Value t -- | Computes the sum of elements across dimensions of a tensor. -- -- Reduces <tt>input</tt> along the dimensions given in -- <tt>reduction_indices</tt>. Unless <tt>keep_dims</tt> is true, the -- rank of the tensor is reduced by 1 for each entry in -- <tt>reduction_indices</tt>. If <tt>keep_dims</tt> is true, the reduced -- dimensions are retained with length 1. sum :: (TensorType t, OneOf ((:) * (Complex Double) ((:) * (Complex Float) ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))))) t, TensorType tidx, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tidx) => Tensor v1 t -> Tensor v2 tidx -> Tensor Value t -- | Finds values and indices of the <tt>k</tt> largest elements for the -- last dimension. -- -- If the input is a vector (rank-1), finds the <tt>k</tt> largest -- entries in the vector and outputs their values and indices as vectors. -- Thus `values[j]` is the <tt>j</tt>-th largest entry in <tt>input</tt>, -- and its index is `indices[j]`. -- -- For matrices (resp. higher rank input), computes the top <tt>k</tt> -- entries in each row (resp. vector along the last dimension). Thus, -- -- values.shape = indices.shape = input.shape[:-1] + [k] -- -- If two elements are equal, the lower-index element appears first. -- -- If <tt>k</tt> varies dynamically, use <tt>TopKV2</tt> below. topK :: (TensorType t, OneOf ((:) * Int16 ((:) * Int32 ((:) * Int64 ((:) * Int8 ((:) * Word16 ((:) * Word8 ((:) * Double ((:) * Float ([] *))))))))) t) => Int64 -> Tensor v1 t -> (Tensor Value t, Tensor Value Int32) -- | Shuffle dimensions of x according to a permutation. -- -- The output <tt>y</tt> has the same rank as <tt>x</tt>. The shapes of -- <tt>x</tt> and <tt>y</tt> satisfy: `y.shape[i] == x.shape[perm[i]] for -- i in [0, 1, ..., rank(x) - 1]` transpose :: (TensorType t, TensorType tperm, OneOf ((:) * Int32 ((:) * Int64 ([] *))) tperm) => Tensor v1 t -> Tensor v2 tperm -> Tensor Value t truncatedNormal :: TensorType a => Tensor v Int64 -> Build (Tensor Value a) -- | Create a new, uninitialized stateful Tensor of the given shape. variable :: TensorType a => Shape -> Build (Tensor Ref a) -- | Create a constant vector. vector :: TensorType a => [a] -> Tensor Value a zeros :: (Num a, TensorType a) => Shape -> Tensor Value a -- | Returns a tensor of zeros with the same shape and type as x. zerosLike :: TensorType t => Tensor v1 t -> Tensor Value t instance (TensorFlow.Types.TensorType a, GHC.Num.Num a, v ~ TensorFlow.Tensor.Value, TensorFlow.Types.OneOf '[GHC.Types.Double, GHC.Types.Float, GHC.Int.Int32, GHC.Int.Int64, Data.Complex.Complex GHC.Types.Float, Data.Complex.Complex GHC.Types.Double] a) => GHC.Num.Num (TensorFlow.Tensor.Tensor v a) -- | Parallel lookups on the list of tensors. module TensorFlow.EmbeddingOps -- | Looks up <tt>ids</tt> in a list of embedding tensors. -- -- This function is used to perform parallel lookups on the list of -- tensors in <tt>params</tt>. It is a generalization of <a>gather</a>, -- where <tt>params</tt> is interpreted as a partition of a larger -- embedding tensor. -- -- The partition_strategy is "mod", we assign each id to partition `p = -- id % len(params)`. For instance, 13 ids are split across 5 partitions -- as: `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]` -- -- The results of the lookup are concatenated into a dense tensor. The -- returned tensor has shape `shape(ids) + shape(params)[1:]`. embeddingLookup :: (TensorType a, OneOf '[Int64, Int32] b, Num b) => [Tensor v a] -> Tensor Value b -> Build (Tensor Value a) module TensorFlow.Gradient -- | Gradient of <tt>y</tt> w.r.t. each element of <tt>xs</tt>. gradients :: (Num (Tensor v1 a), v1 ~ Value, GradientCompatible a) => Tensor v1 a -> [Tensor v2 a] -> Build [Tensor Value a]