-- Copyright 2016 TensorFlow authors. -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} -- | Tests for EmbeddingOps. module Main where import Data.Int (Int32, Int64) import Data.List (genericLength) import Google.Test (googleTest) import TensorFlow.EmbeddingOps (embeddingLookup) import Test.Framework (Test) import Test.Framework.Providers.QuickCheck2 (testProperty) import Test.HUnit ((@=?)) import Test.Framework.Providers.HUnit (testCase) import Test.QuickCheck (Arbitrary(..), Property, choose, vectorOf) import Test.QuickCheck.Monadic (monadicIO, run) import TensorFlow.Test (assertAllClose) import qualified Data.Vector as V import qualified TensorFlow.GenOps.Core as CoreOps import qualified TensorFlow.Ops as TF import qualified TensorFlow.Session as TF import qualified TensorFlow.Tensor as TF import qualified TensorFlow.Types as TF import qualified TensorFlow.Gradient as TF import qualified TensorFlow.Build as TF import qualified TensorFlow.Nodes as TF buildAndRun :: TF.Fetchable t a => TF.Build t -> IO a buildAndRun = TF.runSession . TF.buildAnd TF.run -- | Tries to perform a simple embedding lookup, with two partitions. testEmbeddingLookupHasRightShapeWithPartition :: Test testEmbeddingLookupHasRightShapeWithPartition = testCase "testEmbeddingLookupHasRightShapeWithPartition" $ do let embShape = TF.Shape [1, 3] -- Consider a 3-dim embedding of two items. let embedding1 = [1, 1, 1 :: Int32] let embedding2 = [0, 0, 0 :: Int32] let embedding = [ TF.constant embShape embedding1 , TF.constant embShape embedding2 ] let idValues = [0, 1 :: Int32] let ids = TF.constant (TF.Shape [1, 2]) idValues let op = embeddingLookup embedding ids (values, shape) <- buildAndRun $ do vs <- op return (vs, TF.shape vs) -- This is the shape that is returned in the equiv. Python. shape @=? V.fromList [1, 2, 3] -- "[0, 1]" should pull out the resulting vector. values @=? V.fromList [1, 1, 1, 0, 0, 0] -- | Tries to perform a simple embedding lookup, with only a single partition. testEmbeddingLookupHasRightShape :: Test testEmbeddingLookupHasRightShape = testCase "testEmbeddingLookupHasRightShape" $ do -- Consider a 3-dim embedding of two items let embShape = TF.Shape [2, 3] let embeddingInit = [ 1, 1, 1 , 0, 0, 0 :: Int32 ] let embedding = TF.constant embShape embeddingInit let idValues = [0, 1 :: Int32] let ids = TF.constant (TF.Shape [1, 2]) idValues let op = embeddingLookup [embedding] ids (values, shape) <- buildAndRun $ do vs <- op return (vs, TF.shape vs) -- This is the shape that is returned in the equiv. Python. shape @=? V.fromList [1, 2, 3] -- "[0, 1]" should pull out the resulting vector. values @=? V.fromList [1, 1, 1, 0, 0, 0] -- | Check that we can calculate gradients w.r.t embeddings. testEmbeddingLookupGradients :: Test testEmbeddingLookupGradients = testCase "testEmbeddingLookupGradients" $ do -- Agrees with "embedding", so gradient should be zero. let xVals = V.fromList ([20, 20 :: Float]) let shape = TF.Shape [2] gs <- TF.runSession $ do grads <- TF.build $ do let embShape = TF.Shape [2, 1] let embeddingInit = [1, 20 ::Float] let idValues = [1, 1 :: Int32] let ids = TF.constant (TF.Shape [1, 2]) idValues x <- TF.placeholder (TF.Shape [2]) embedding <- TF.initializedVariable =<< TF.render (TF.constant embShape embeddingInit) op <- embeddingLookup [embedding] ids let twoNorm = CoreOps.square $ TF.abs (op - x) loss = TF.mean twoNorm (TF.scalar (0 :: Int32)) grad <- fmap head (TF.gradients loss [embedding]) return $ \xs -> TF.runWithFeeds [TF.feed x xs] grad grads (TF.encodeTensorData shape xVals :: TF.TensorData Float) -- Gradients should be zero (or close) assertAllClose gs (V.fromList ([0, 0 :: Float])) -- Verifies that direct gather is the same as dynamic split into -- partitions, followed by embedding lookup. testEmbeddingLookupUndoesSplit :: forall a. (TF.TensorDataType V.Vector a, Show a, Eq a) => LookupExample a -> Property testEmbeddingLookupUndoesSplit (LookupExample numParts shape@(TF.Shape (firstDim : restDims)) values indices) = let modShardedValues :: [TF.Tensor TF.Value a] = CoreOps.dynamicPartition numParts shapedValues cyclicCounter cyclicCounter :: TF.Tensor TF.Value Int32 = TF.vector [0..fromIntegral firstDim-1] `CoreOps.mod` fromIntegral numParts indicesVector = TF.vector indices directs = CoreOps.gather shapedValues indicesVector shapedValues = TF.constant shape values in monadicIO $ run $ do (shapeOut, got, want :: V.Vector a) <- TF.runSession $ TF.buildAnd TF.run $ do embeddings <- embeddingLookup modShardedValues indicesVector return (TF.cast (TF.shape embeddings), embeddings, directs) -- Checks the explicitly documented invariant of embeddingLookup. shapeOut @=? V.fromList (genericLength indices : restDims) got @=? want testEmbeddingLookupUndoesSplit _ = error "Bug in Arbitrary (LookupExample)" -- | Consistent set of parameters for EmbeddingLookupUndoesSplit. data LookupExample a = LookupExample Int64 -- ^ number of ways to split. TF.Shape -- ^ shape of the generated tensor [a] -- ^ data for the tensor [Int32] -- ^ indices to split the tensor by deriving Show instance Arbitrary a => Arbitrary (LookupExample a) where arbitrary = do rank <- choose (1, 4) -- Takes rank-th root of 100 to cap the tensor size. let maxDim = fromIntegral (ceiling doubleMaxDim :: Int64) doubleMaxDim :: Double doubleMaxDim = 100 ** (1 / fromIntegral rank) shape@(firstDim : _) <- vectorOf rank (choose (1, maxDim)) values <- vectorOf (fromIntegral $ product shape) arbitrary numParts <- choose (2, 15) indSize <- choose (0, fromIntegral $ firstDim - 1) indices <- vectorOf indSize (choose (0, fromIntegral firstDim - 1)) return $ LookupExample numParts (TF.Shape shape) values indices main :: IO () main = googleTest [ testProperty "EmbeddingLookupUndoesSplit" (testEmbeddingLookupUndoesSplit :: LookupExample Double -> Property) , testEmbeddingLookupHasRightShape , testEmbeddingLookupHasRightShapeWithPartition , testEmbeddingLookupGradients ]