-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Friendly layer around TensorFlow bindings. -- -- Please see README.md @package tensorflow-ops @version 0.2.0.0 -- | This module contains definitions for some built-in TensorFlow -- operations. -- -- Note that certain, "stateful" ops like variable and -- assign return a Build action (e.g., Build (Tensor -- Ref a) instead of a pure value; the returned Tensors are -- always rendered in the current Build context. This approach -- helps us avoid problems with inlining or common subexpression -- elimination, by writing -- --
-- do -- v <- variable [] -- w <- assign v 3 -- render $ w * w ---- -- instead of -- --
-- let -- v = variable [] -- w = assign v 3 -- in w * w ---- -- since the latter could be reasonably transformed by the compiler into -- (or vice versa) -- --
-- let -- v = variable [] -- w = assign v 3 -- w' = assign v 3 -- in w * w' ---- -- Ops should return a Build action if their original -- OpDef marks them as stateful, or if they take any Refs as -- input. (This mirrors the rules that TensorFlow uses to avoid common -- subexpression elimination.) module TensorFlow.Ops add :: OneOf (:) * Complex Double (:) * Complex Float (:) * ByteString (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t add' :: OneOf (:) * Complex Double (:) * Complex Float (:) * ByteString (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t abs :: OneOf (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor Build t abs' :: OneOf (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor Build t addN :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float (:) * Variant [] * t => [Tensor v'1 t] -> Tensor Build t addN' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float (:) * Variant [] * t => OpParams -> [Tensor v'1 t] -> Tensor Build t argMax :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx, OneOf (:) * Int32 (:) * Int64 [] * output_type) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build output_type argMax' :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx, OneOf (:) * Int32 (:) * Int64 [] * output_type) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build output_type assign :: (MonadBuild m', TensorType t) => Tensor Ref t -> Tensor v'2 t -> m' Tensor Ref t assign' :: (MonadBuild m', TensorType t) => OpParams -> Tensor Ref t -> Tensor v'2 t -> m' Tensor Ref t broadcastGradientArgs :: OneOf (:) * Int32 (:) * Int64 [] * t => Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t) broadcastGradientArgs' :: OneOf (:) * Int32 (:) * Int64 [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t) cast :: (TensorType srcT, TensorType dstT) => Tensor v'1 srcT -> Tensor Build dstT cast' :: (TensorType srcT, TensorType dstT) => OpParams -> Tensor v'1 srcT -> Tensor Build dstT concat :: TensorType t => Tensor v'1 Int32 -> [Tensor v'2 t] -> Tensor Build t concat' :: TensorType t => OpParams -> Tensor v'1 Int32 -> [Tensor v'2 t] -> Tensor Build t -- | Create a constant tensor. -- -- The values should be in row major order, e.g., -- -- element 0: index (0, ..., 0) element 1: index (0, ..., 1) ... constant :: TensorType a => Shape -> [a] -> Tensor Build a constant' :: forall a. TensorType a => OpParams -> Shape -> [a] -> Tensor Build a equal :: OneOf (:) * Complex Double (:) * Complex Float (:) * Bool (:) * ByteString (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build Bool equal' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Bool (:) * ByteString (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build Bool expandDims :: TensorType t => Tensor v1 t -> Tensor v2 Int32 -> Tensor Build t expandDims' :: TensorType t => OpParams -> Tensor v1 t -> Tensor v2 Int32 -> Tensor Build t -- | Creates a variable initialized to the given value. Initialization -- happens next time session runs. initializedVariable :: (MonadBuild m, TensorType a) => Tensor v a -> m (Tensor Ref a) initializedVariable' :: (MonadBuild m, TensorType a) => OpParams -> Tensor v a -> m (Tensor Ref a) -- | Creates a zero-initialized variable with the given shape. zeroInitializedVariable :: (MonadBuild m, TensorType a, Num a) => Shape -> m (Tensor Ref a) zeroInitializedVariable' :: (MonadBuild m, TensorType a, Num a) => OpParams -> Shape -> m (Tensor Ref a) fill :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * index_type) => Tensor v'1 index_type -> Tensor v'2 t -> Tensor Build t fill' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * index_type) => OpParams -> Tensor v'1 index_type -> Tensor v'2 t -> Tensor Build t identity :: TensorType t => Tensor v'1 t -> Tensor Build t identity' :: TensorType t => OpParams -> Tensor v'1 t -> Tensor Build t matMul :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t matMul' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t matTranspose :: TensorType a => Tensor e a -> Tensor Build a matTranspose' :: TensorType a => OpParams -> Tensor v a -> Tensor Build a mean :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t mean' :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t mul :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t mul' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t neg :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor Build t neg' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor Build t oneHot :: (TensorType t, OneOf (:) * Int32 (:) * Int64 (:) * Word8 [] * tI) => Tensor v'1 tI -> Tensor v'2 Int32 -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t oneHot' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 (:) * Word8 [] * tI) => OpParams -> Tensor v'1 tI -> Tensor v'2 Int32 -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t pack :: TensorType t => [Tensor v'1 t] -> Tensor Build t pack' :: TensorType t => OpParams -> [Tensor v'1 t] -> Tensor Build t placeholder :: (MonadBuild m, TensorType a) => Shape -> m (Tensor Value a) placeholder' :: forall m a. (MonadBuild m, TensorType a) => OpParams -> Shape -> m (Tensor Value a) range :: OneOf (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * tidx => Tensor v'1 tidx -> Tensor v'2 tidx -> Tensor v'3 tidx -> Tensor Build tidx range' :: OneOf (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * tidx => OpParams -> Tensor v'1 tidx -> Tensor v'2 tidx -> Tensor v'3 tidx -> Tensor Build tidx -- | Helper function for reduction ops (translation of -- math_ops.reduced_shape). reducedShape :: (OneOf '[Int32, Int64] t1, OneOf '[Int32, Int64] t2) => Tensor v1 t1 -> Tensor v2 t2 -> Tensor Build Int32 -- | Computes the mean of elements across dimensions of a tensor. See -- mean reduceMean :: (TensorType a, OneOf '[Double, Float, Complex Float, Complex Double] a) => Tensor v a -> Tensor Build a reduceMean' :: (TensorType a, OneOf '[Double, Float, Complex Float, Complex Double] a) => OpParams -> Tensor v a -> Tensor Build a relu :: OneOf (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor Build t relu' :: OneOf (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor Build t reluGrad :: OneOf (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t reluGrad' :: OneOf (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t reshape :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tshape) => Tensor v'1 t -> Tensor v'2 tshape -> Tensor Build t reshape' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tshape) => OpParams -> Tensor v'1 t -> Tensor v'2 tshape -> Tensor Build t -- | Restore a tensor's value from a checkpoint file. restore :: forall a m. (MonadBuild m, TensorType a) => ByteString -> Tensor Ref a -> m ControlNode -- | Restore a tensor's value from a checkpoint file. -- -- This version allows restoring from a checkpoint file that uses a -- different tensor name than the variable. restoreFromName :: forall a m. (MonadBuild m, TensorType a) => ByteString -> ByteString -> Tensor Ref a -> m ControlNode save :: forall a m v. (Rendered (Tensor v), MonadBuild m, TensorType a) => ByteString -> [Tensor v a] -> m ControlNode -- | Create a constant scalar. scalar :: TensorType a => a -> Tensor Build a scalar' :: TensorType a => OpParams -> a -> Tensor Build a shape :: TensorType t => Tensor v t -> Tensor Build Int32 shape' :: TensorType t => OpParams -> Tensor v t -> Tensor Build Int32 sign :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor Build t sign' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int32 (:) * Int64 (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor Build t size :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * out_type) => Tensor v'1 t -> Tensor Build out_type size' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * out_type) => OpParams -> Tensor v'1 t -> Tensor Build out_type softmax :: OneOf (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor Build t softmax' :: OneOf (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor Build t softmaxCrossEntropyWithLogits :: OneOf (:) * Word16 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t) softmaxCrossEntropyWithLogits' :: OneOf (:) * Word16 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> (Tensor Build t, Tensor Build t) sparseToDense :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tindices) => Tensor v'1 tindices -> Tensor v'2 tindices -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t sparseToDense' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tindices) => OpParams -> Tensor v'1 tindices -> Tensor v'2 tindices -> Tensor v'3 t -> Tensor v'4 t -> Tensor Build t sub :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t sub' :: OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word8 (:) * Double (:) * Float [] * t => OpParams -> Tensor v'1 t -> Tensor v'2 t -> Tensor Build t sum :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx) => Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t sum' :: (OneOf (:) * Complex Double (:) * Complex Float (:) * Int16 (:) * Int32 (:) * Int64 (:) * Int8 (:) * Word16 (:) * Word32 (:) * Word64 (:) * Word8 (:) * Double (:) * Float [] * t, OneOf (:) * Int32 (:) * Int64 [] * tidx) => OpParams -> Tensor v'1 t -> Tensor v'2 tidx -> Tensor Build t -- | Sum a tensor down to a scalar Seee sum reduceSum :: (OneOf '[Double, Float, Int32, Int64, Complex Float, Complex Double] a) => Tensor v a -> Tensor Build a reduceSum' :: (OneOf '[Double, Float, Int32, Int64, Complex Float, Complex Double] a) => OpParams -> Tensor v a -> Tensor Build a transpose :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tperm) => Tensor v'1 t -> Tensor v'2 tperm -> Tensor Build t transpose' :: (TensorType t, OneOf (:) * Int32 (:) * Int64 [] * tperm) => OpParams -> Tensor v'1 t -> Tensor v'2 tperm -> Tensor Build t -- | Random tensor from the unit normal distribution with bounded values. -- -- This is a type-restricted version of truncatedNormal. truncatedNormal :: (MonadBuild m, OneOf '[Word16, Double, Float] a) => Tensor v Int64 -> m (Tensor Value a) truncatedNormal' :: (MonadBuild m, OneOf '[Word16, Double, Float] a) => OpParams -> Tensor v Int64 -> m (Tensor Value a) variable :: (MonadBuild m', TensorType dtype) => Shape -> m' Tensor Ref dtype variable' :: (MonadBuild m', TensorType dtype) => OpParams -> Shape -> m' Tensor Ref dtype -- | Create a constant vector. vector :: TensorType a => [a] -> Tensor Build a vector' :: TensorType a => OpParams -> [a] -> Tensor Build a zeros :: forall a. (Num a, TensorType a) => Shape -> Tensor Build a zerosLike :: TensorType t => Tensor v'1 t -> Tensor Build t zerosLike' :: TensorType t => OpParams -> Tensor v'1 t -> Tensor Build t -- | Reshape a N-D tensor down to a scalar. -- -- See reshape. scalarize :: TensorType a => Tensor v a -> Tensor Build a instance (TensorFlow.Types.TensorType a, GHC.Num.Num a, v ~ TensorFlow.Build.Build, TensorFlow.Types.OneOf '[GHC.Types.Double, GHC.Types.Float, GHC.Int.Int32, GHC.Int.Int64, Data.Complex.Complex GHC.Types.Float, Data.Complex.Complex GHC.Types.Double] a) => GHC.Num.Num (TensorFlow.Tensor.Tensor v a) module TensorFlow.NN -- | Computes sigmoid cross entropy given logits. -- -- Measures the probability error in discrete classification tasks in -- which each class is independent and not mutually exclusive. For -- instance, one could perform multilabel classification where a picture -- can contain both an elephant and a dog at the same time. -- -- For brevity, let `x = logits`, `z = targets`. The logistic loss is -- -- z * -log(sigmoid(x)) + (1 - z) * -log(1 - sigmoid(x)) = z * -log(1 -- (1 + exp(-x))) + (1 - z) * -log(exp(-x) (1 + exp(-x))) = z * -- log(1 + exp(-x)) + (1 - z) * (-log(exp(-x)) + log(1 + exp(-x))) = z * -- log(1 + exp(-x)) + (1 - z) * (x + log(1 + exp(-x)) = (1 - z) * x + -- log(1 + exp(-x)) = x - x * z + log(1 + exp(-x)) -- -- For x < 0, to avoid overflow in exp(-x), we reformulate the above -- -- x - x * z + log(1 + exp(-x)) = log(exp(x)) - x * z + log(1 + exp(-x)) -- = - x * z + log(1 + exp(x)) -- -- Hence, to ensure stability and avoid overflow, the implementation uses -- this equivalent formulation -- -- max(x, 0) - x * z + log(1 + exp(-abs(x))) -- -- logits and targets must have the same type and -- shape. sigmoidCrossEntropyWithLogits :: (MonadBuild m, OneOf '[Float, Double] a, TensorType a, Num a) => Tensor Value a -> Tensor Value a -> m (Tensor Value a) module TensorFlow.Gradient type GradientCompatible a = (Num a, OneOf '[Float, Complex Float, Complex Double] a) -- | Gradient of y w.r.t. each element of xs. gradients :: forall a v1 t m. (MonadBuild m, Rendered t, ToTensor t, GradientCompatible a) => Tensor v1 a -> [t a] -> m [Tensor Value a] -- | Parallel lookups on the list of tensors. module TensorFlow.EmbeddingOps -- | Looks up ids in a list of embedding tensors. -- -- This function is used to perform parallel lookups on the list of -- tensors in params. It is a generalization of gather, -- where params is interpreted as a partition of a larger -- embedding tensor. -- -- The partition_strategy is "mod", we assign each id to partition `p = -- id % len(params)`. For instance, 13 ids are split across 5 partitions -- as: `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]` -- -- The results of the lookup are concatenated into a dense tensor. The -- returned tensor has shape `shape(ids) + shape(params)[1:]`. embeddingLookup :: forall a b v1 v2 m. (MonadBuild m, Rendered (Tensor v1), TensorType a, OneOf '[Int64, Int32] b, Num b) => [Tensor v1 a] -> Tensor v2 b -> m (Tensor Value a) -- | Queues in TensorFlow graph. Very limited support for now. module TensorFlow.Queue -- | A queue carrying tuples. data Queue (as :: [*]) -- | Creates a new queue with the given capacity and shared name. makeQueue :: forall as m. (MonadBuild m, TensorTypes as) => Int64 -> ByteString -> m (Queue as) -- | Adds the given values to the queue. enqueue :: forall as v m. (MonadBuild m, TensorTypes as) => Queue as -> TensorList v as -> m ControlNode -- | Retrieves the values from the queue. dequeue :: forall as m. (MonadBuild m, TensorTypes as) => Queue as -> m (TensorList Value as) -- | An implementation of ResourceHandle-based variables. -- -- The main difference between this and Ref-based variables is -- that reads are explicit, via the readValue op. -- -- TODO: given that distinction, figure out a good story around gradients -- and save/restore. Then, merge this module into TensorFlow.Ops. module TensorFlow.Variable data Variable a -- | Creates a new, uninitialized variable. variable :: (MonadBuild m, TensorType a) => Shape -> m (Variable a) variable' :: forall m a. (MonadBuild m, TensorType a) => OpParams -> Shape -> m (Variable a) -- | Gets the value stored in a variable. -- -- Note that this op is stateful since it depends on the value of the -- variable; however, it may be CSE'd with other reads in the same -- context. The context can be fixed by using render along with -- (for example) withControlDependencies. For example: -- --
-- runSession $ do -- v <- variable [] -- a <- assign v 24 -- r <- withControlDependencies a $ render $ readValue v + 18 -- result <- run r -- liftIO $ (42 :: Float) @=? unScalar result --readValue :: TensorType a => Variable a -> Tensor Build a -- | The initial value of a Variable created with -- initializedVariable. initializedValue :: Variable a -> Maybe (Tensor Value a) -- | Creates a variable initialized to the given value. Initialization -- happens next time session runs. initializedVariable :: (MonadBuild m, TensorType a) => Tensor v a -> m (Variable a) initializedVariable' :: forall a m v. (MonadBuild m, TensorType a) => OpParams -> Tensor v a -> m (Variable a) -- | Creates a zero-initialized variable with the given shape. zeroInitializedVariable :: (MonadBuild m, TensorType a, Num a) => Shape -> m (Variable a) zeroInitializedVariable' :: (MonadBuild m, TensorType a, Num a) => OpParams -> Shape -> m (Variable a) -- | Sets the value of a variable. assign :: (MonadBuild m, TensorType a) => Variable a -> Tensor v a -> m ControlNode assign' :: (MonadBuild m, TensorType a) => OpParams -> Variable a -> Tensor v a -> m ControlNode -- | Increments the value of a variable. assignAdd :: (MonadBuild m, TensorType a) => Variable a -> Tensor v a -> m ControlNode assignAdd' :: (MonadBuild m, TensorType a) => OpParams -> Variable a -> Tensor v a -> m ControlNode -- | Update '*var' according to the Adam algorithm. -- -- lr_t <- learning_rate * sqrt(1 - beta2^t) / (1 - beta1^t) m_t <- -- beta1 * m_{t-1} + (1 - beta1) * g_t v_t <- beta2 * v_{t-1} + (1 - -- beta2) * g_t * g_t variable <- variable - lr_t * m_t / (sqrt(v_t) + -- epsilon) resourceApplyAdam :: (MonadBuild m, OneOf '[(Complex Double), (Complex Float), Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t) => Variable t -> Variable t -> Variable t -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor v4 t -> Tensor v5 t -> Tensor v6 t -> Tensor v7 t -> m (ControlNode) resourceApplyAdam' :: (MonadBuild m, OneOf '[(Complex Double), (Complex Float), Int16, Int32, Int64, Int8, Word16, Word8, Double, Float] t) => OpParams -> Variable t -> Variable t -> Variable t -> Tensor v1 t -> Tensor v2 t -> Tensor v3 t -> Tensor v4 t -> Tensor v5 t -> Tensor v6 t -> Tensor v7 t -> m (ControlNode) instance TensorFlow.Tensor.Rendered TensorFlow.Variable.Variable instance TensorFlow.Tensor.ToTensor TensorFlow.Variable.Variable module TensorFlow.Minimize -- | Functions that minimize a loss w.r.t. a set of Variables. -- -- Generally only performs one step of an iterative algorithm. -- -- Minimizers are defined as a function of the gradients instead -- of the loss so that users can apply transformations to the gradients. type Minimizer a = forall m. MonadBuild m => [Variable a] -> [Tensor Value a] -> m ControlNode -- | Convenience wrapper around gradients and a Minimizer. minimizeWith :: (MonadBuild m, GradientCompatible a) => Minimizer a -> Tensor v a -> [Variable a] -> m ControlNode -- | Perform one step of the gradient descent algorithm. gradientDescent :: GradientCompatible a => a -> Minimizer a data AdamConfig AdamConfig :: Float -> Float -> Float -> Float -> AdamConfig [adamLearningRate] :: AdamConfig -> Float [adamBeta1] :: AdamConfig -> Float [adamBeta2] :: AdamConfig -> Float [adamEpsilon] :: AdamConfig -> Float -- | Perform one step of the adam algorithm. -- -- See https://arxiv.org/abs/1412.6980. -- -- NOTE: Currently requires all Variables to have an -- initializedValue. adam :: Minimizer Float adam' :: AdamConfig -> Minimizer Float instance Data.Default.Class.Default TensorFlow.Minimize.AdamConfig