-- Copyright 2016 TensorFlow authors. -- -- Licensed under the Apache License, Version 2.0 (the "License"); -- you may not use this file except in compliance with the License. -- You may obtain a copy of the License at -- -- http://www.apache.org/licenses/LICENSE-2.0 -- -- Unless required by applicable law or agreed to in writing, software -- distributed under the License is distributed on an "AS IS" BASIS, -- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -- See the License for the specific language governing permissions and -- limitations under the License. {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoMonadFailDesugaring #-} import Data.Int (Int32, Int64) import Data.List (sort) import qualified Data.List as List import Data.ProtoLens.TextFormat (showMessage) import Test.Framework (defaultMain, Test) import Lens.Family2 ((^..), (.~)) import Test.Framework.Providers.HUnit (testCase) import Test.HUnit ((@=?), assertEqual, assertFailure) import qualified Data.Vector as V import System.Random (randomIO, randomRIO) import Control.Monad(forM_, replicateM, zipWithM) import Control.Monad.IO.Class (liftIO) import qualified TensorFlow.Core as TF import qualified TensorFlow.GenOps.Core as TF (conv2DBackpropInput', max, maximum, resizeBilinear', tile, pad, batchToSpaceND, spaceToBatchND, squeeze, sqrt, slice, shape, diag, depthwiseConv2dNative', depthwiseConv2dNativeBackpropInput', batchMatMul, batchMatMul', sum, conjugateTranspose) import qualified TensorFlow.Gradient as TF import qualified TensorFlow.Ops as TF hiding (zeroInitializedVariable, shape) import qualified TensorFlow.Output as TF import qualified TensorFlow.Types as TF import qualified TensorFlow.Variable as TF import Proto.Tensorflow.Core.Framework.Graph_Fields (node) import Proto.Tensorflow.Core.Framework.NodeDef_Fields (op) import qualified Data.ByteString.Char8 as BS import TensorFlow.Session (SessionT) testGradientSimple :: Test testGradientSimple = testCase "testGradientSimple" $ do let grads = do x <- TF.render $ TF.scalar (3 :: Float) b <- TF.render $ TF.scalar (4 :: Float) let y = x `TF.mul` x `TF.add` b TF.gradients y [x, b] -- Assert that the gradients are right. [dx, db] <- TF.runSession $ grads >>= TF.run 6 @=? TF.unScalar dx 1 @=? TF.unScalar db -- Assert that the graph has the expected ops. let graphDef = TF.asGraphDef grads putStrLn $ showMessage graphDef let ops = graphDef ^.. node . traverse . op expected = [ "Const" , "Mul" , "Const" , "Add" -- Default output gradient of y. , "Shape" , "Const" , "Fill" -- Add gradient. , "Shape" , "Shape" , "BroadcastGradientArgs" , "Sum" , "Sum" , "Reshape" , "Reshape" -- Mul gradient. , "Shape" -- This Op gets dedup'd because the inputs are the same. -- TODO(fmayle): The same would happen to the Mul and Sum ops -- below if the gradient function didn't multiply one as -- 'dz * y' and the other as 'x * dz'. We could change the -- order, but I'm going to keep it the same as the python -- version for now. -- -- , "Shape" , "BroadcastGradientArgs" , "Mul" , "Mul" , "Sum" , "Sum" , "Reshape" , "Reshape" -- AddN to combine x's output gradients. , "AddN" ] sort expected @=? sort ops testGradientDisconnected :: Test testGradientDisconnected = testCase "testGradientDisconnected" $ do let grads = do x <- TF.render $ TF.scalar (3 :: Float) b <- TF.render $ TF.scalar (4 :: Float) TF.gradients x [x, b] -- Assert that the gradients are right. [dx, db] <- TF.runSession $ grads >>= TF.run 1 @=? TF.unScalar dx 0 @=? TF.unScalar db -- Assert that the graph has the expected ops. let graphDef = TF.asGraphDef grads putStrLn $ showMessage graphDef let ops = graphDef ^.. node . traverse . op expected = [ "Const" , "Const" -- Default output gradient of x. , "Shape" , "Const" , "Fill" -- Default output gradient of b. , "ZerosLike" ] sort expected @=? sort ops testGradientIncidental :: Test testGradientIncidental = testCase "testGradientIncidental" $ do let grads = do x <- TF.render $ TF.scalar (3 :: Float) b <- TF.render $ TF.scalar (4 :: Float) w <- TF.render $ TF.diag $ TF.vector [ 1.0 :: Float ] let incidental = b `TF.mul` w let y = (x `TF.mul` b) `TF.add` incidental TF.gradients y [x] -- Assert that the gradients are right. [dx] <- TF.runSession $ grads >>= TF.run 4 @=? TF.unScalar dx -- Assert that the graph has the expected ops. let graphDef = TF.asGraphDef grads putStrLn $ showMessage graphDef let ops = graphDef ^.. node . traverse . op expected = [ "Add" , "BroadcastGradientArgs" , "BroadcastGradientArgs" , "Const" , "Const" , "Const" , "Const" , "Diag" , "Fill" , "Mul" , "Mul" , "Mul" , "Mul" , "Reshape" , "Reshape" , "Reshape" , "Reshape" , "Shape" , "Shape" , "Shape" , "Shape" , "Shape" , "Sum" , "Sum" , "Sum" , "Sum" ] sort expected @=? sort ops testGradientPruning :: Test testGradientPruning = testCase "testGradientPruning" $ do let grads = do x <- TF.render $ TF.scalar (3 :: Float) b <- TF.render $ TF.scalar (4 :: Float) bx <- TF.render $ b `TF.mul` x let y = bx `TF.add` b TF.gradients y [x, bx] -- Assert that the gradients are right. [dx, dxb] <- TF.runSession $ grads >>= TF.run 4 @=? TF.unScalar dx 1 @=? TF.unScalar dxb -- Test that identical "stateful" ops work with createGraph. testCreateGraphStateful :: Test testCreateGraphStateful = testCase "testCreateGraphStateful" $ do [dx, dy] <- TF.runSession $ do let shape = TF.constant (TF.Shape [1]) [1] x :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape y :: TF.Tensor TF.Value Float <- TF.truncatedNormal shape TF.gradients (TF.expr x + TF.expr y * 3) [x, y] >>= TF.run -- If this test fails, it will likely be caused by an exception within -- `TF.gradients`. These asserts are extra. 1 @=? TF.unScalar dx 3 @=? TF.unScalar dy -- Test that name scopes work with createGraph. testCreateGraphNameScopes :: Test testCreateGraphNameScopes = testCase "testCreateGraphNameScopes" $ do [dx] <- TF.runSession $ do let shape = TF.constant (TF.Shape [1]) [1] x :: TF.Tensor TF.Value Float <- TF.withNameScope "foo" (TF.truncatedNormal shape) TF.gradients x [x] >>= TF.run -- If this test fails, it will likely be caused by an exception within -- `TF.gradients`. This assert is extra. 1 @=? TF.unScalar dx -- Test that createGraph can handle graphs with diamond shapes. testDiamond :: Test testDiamond = testCase "testDiamond" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [1] let y = x `TF.mul` x z = y*y TF.gradients z [x] >>= TF.run (4 :: Float) @=? TF.unScalar dx testAddNGradient :: Test testAddNGradient = testCase "testAddNGradient" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [1, 2, 0 :: Float] let y = TF.addN [x, x] TF.gradients y [x] >>= TF.run V.fromList [2, 2, 2 :: Float] @=? dx testMeanGradient :: Test testMeanGradient = testCase "testMeanGradient" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [1, 2, 0 :: Float] let y = TF.mean x (TF.vector [0 :: Int32]) TF.gradients y [x] >>= TF.run V.fromList [1, 1, 1 :: Float] @=? dx testMeanGradGrad :: Test testMeanGradGrad = testCase "testMeanGradGrad" $ do [ddx] <- TF.runSession $ do x <- TF.render $ TF.vector [1, 2, 0 :: Float] let y = TF.mean x (TF.vector [0 :: Int32]) [dx] <- TF.gradients y [x] TF.gradients dx [x] >>= TF.run V.fromList [0, 0, 0 :: Float] @=? ddx testMaxGradient :: Test testMaxGradient = testCase "testMaxGradient" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [1, 2, 3, 0, 1 :: Float] let y = TF.max x (0 :: TF.Tensor TF.Build Int32) TF.gradients y [x] >>= TF.run V.fromList [0, 0, 1, 0, 0 :: Float] @=? dx testConcatGradient :: Test testConcatGradient = testCase "testConcatGradient" $ do [dv,dv'] <- TF.runSession $ do v <- TF.render $ TF.vector [1 :: Float] v' <- TF.render $ TF.vector [2 :: Float] let y = TF.concat (TF.scalar 0) [ v, v' ] TF.gradients y [v,v'] >>= TF.run V.fromList [1 :: Float] @=? dv V.fromList [1 :: Float] @=? dv' [dw,dw'] <- TF.runSession $ do w <- TF.render $ TF.vector [1,2,3,4 :: Float] w' <- TF.render $ TF.vector [5,6,7,8 :: Float] let y = TF.concat (TF.scalar 0) [ w, w', w ] TF.gradients y [w,w'] >>= TF.run V.fromList [2,2,2,2 :: Float] @=? dw V.fromList [1,1,1,1 :: Float] @=? dw' verifyConcatGradients :: [[Int64]] -> Int32 -> IO () verifyConcatGradients shapes concatDim = do let floatsFromShape :: [Int64] -> IO [Float] floatsFromShape shape = replicateM (fromIntegral $ List.product shape) randomIO constantZip = zipWithM $ \x shape -> TF.render $ TF.constant (TF.Shape shape) x inputGrads <- mapM floatsFromShape shapes inputs <- mapM floatsFromShape shapes dinputs <- TF.runSession $ do inputTensors <- inputs `constantZip` shapes inputGradTensors <- inputGrads `constantZip` shapes inputTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputTensors inputGradTensor <- TF.render $ TF.concat (TF.scalar concatDim) inputGradTensors output <- TF.render $ inputTensor `TF.mul` inputGradTensor TF.gradients output inputTensors >>= TF.run (V.fromList <$> inputGrads) @=? dinputs -- This test checks that the gradient of a concat op -- is correct along the first, second, and third dimension. testConcatGradientSimple :: Test testConcatGradientSimple = testCase "testConcatGradientSimple" $ do -- The following check is equivalent to ConcatTest._testGradientsSimple from -- tensorflow/tensorflow/compiler/tests/concat_ops_test.py verifyConcatGradients [[10,x,2] | x <- [1,2,6]] 1 -- The following check is equivalent to ConcatTest._testGradientsFirstDim from -- tensorflow/tensorflow/compiler/tests/concat_ops_test.py verifyConcatGradients [[x,10,2] | x <- [1,2,6]] 0 -- The following check is equivalent to ConcatTest._testGradientsLastDim from -- tensorflow/tensorflow/compiler/tests/concat_ops_test.py verifyConcatGradients [[10,2,x] | x <- [1,2,6]] 2 -- This test checks that the gradient of a concat op -- along a random dimension across random shapes is as expected. -- This test is inspired by ConcatTest._RunAndVerifyGradientsRandom from -- tensorflow/tensorflow/compiler/tests/concat_ops_test.py, but also -- verifies the gradient along negative concat dimensions. testConcatRunAndVerifyGradientsRandom :: Test testConcatRunAndVerifyGradientsRandom = testCase "testConcatRunAndVerifyGradientsRandom" $ forM_ [1..5 :: Int] $ \_ -> do (shapes' :: [Int64]) <- replicateM 5 $ randomRIO (1, 5) (numTensors :: Int) <- randomRIO (2, 10) (concatDim :: Int) <- randomRIO (-4, 4) (concatDimSizes :: [Int64]) <- replicateM numTensors $ randomRIO (1, 5) let update i xs x = take i xs ++ x: drop (i+1) xs concatDim' = concatDim `mod` length shapes' shapes = map (update concatDim' shapes') concatDimSizes verifyConcatGradients shapes $ fromIntegral concatDim -- run single test like this: -- stack --docker --docker-image=$IMAGE_NAME test tensorflow-ops:GradientTest --test-arguments -t"*MaximumGrad*" testMaximumGrad :: Test testMaximumGrad = testCase "testMaximumGrad" $ do [gx, gy] <- TF.runSession $ do x <- TF.render $ TF.vector [0 :: Float] y <- TF.render $ TF.vector [0 :: Float] let z = TF.maximum x y TF.gradients z [x, y] >>= TF.run V.fromList [1] @=? gx V.fromList [1] @=? gy testMaximumGradGrad :: Test testMaximumGradGrad = testCase "testMaximumGradGrad" $ do [ggx] <- TF.runSession $ do x <- TF.render $ TF.vector [2 :: Float] y <- TF.render $ TF.vector [1 :: Float] let z = TF.maximum x y [gx, _gy] <- TF.gradients z [x, y] TF.gradients gx [x] >>= TF.run V.fromList [0] @=? ggx testReluGrad :: Test testReluGrad = testCase "testReluGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [2 :: Float] let y = TF.relu x TF.gradients y [x] >>= TF.run V.fromList [1] @=? dx testReluGradGrad :: Test testReluGradGrad = testCase "testReluGradGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [2 :: Float] let y = TF.relu x [y'] <- TF.gradients y [x] TF.gradients y' [x] >>= TF.run V.fromList [0] @=? dx testTanhGrad :: Test testTanhGrad = testCase "testTanhGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [0 :: Float] let y = TF.tanh x TF.gradients y [x] >>= TF.run V.fromList [1] @=? dx testSigmoidGrad :: Test testSigmoidGrad = testCase "testSigmoidGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [0 :: Float] let y = TF.sigmoid x TF.gradients y [x] >>= TF.run V.fromList [0.25] @=? dx testExpandDims :: Test testExpandDims = testCase "testExpandDims" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 3 :: Int64] let y = TF.expandDims x $ TF.constant (TF.Shape [1]) [0 :: Int32] calculateGradWithShape y x V.fromList [1, 1, 1, 1, 1, 1] @=? dx V.fromList [1, 2, 3] @=? s testReshape :: Test testReshape = testCase "testReshape" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 2 :: Int64] let y = TF.reshape x $ TF.constant (TF.Shape [2]) [1, 4 :: Int32] calculateGradWithShape y x V.fromList [1, 1, 1, 1] @=? dx V.fromList [2, 2] @=? s testPad :: Test testPad = testCase "testPad" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 2, 3 :: Int64] let y = TF.pad x $ TF.constant (TF.Shape [3, 2]) [1, 4, 1, 1, 2, 3 :: Int32] calculateGradWithShape y x V.fromList [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] @=? dx V.fromList [2, 2, 3] @=? s testSqrt :: Test testSqrt = testCase "testSqrt" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [0.0625 :: Float] let y = TF.sqrt x TF.gradients y [x] >>= TF.run V.fromList [2] @=? dx testSlice :: Test testSlice = testCase "testSlice" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 3, 4 :: Int64] (z :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 2 :: Int64] let y = TF.slice x (TF.constant (TF.Shape [3]) [1, 1, 1 :: Int32]) (TF.shape z) calculateGradWithShape y x let expected = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0] V.fromList expected @=? dx V.fromList [2, 3, 4] @=? s testBatchToSpaceND :: Test testBatchToSpaceND = testCase "testBatchToSpaceND" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.constant (TF.Shape [4, 1, 1, 1 :: Int64]) [1, 2, 3, 4] shape <- TF.render $ TF.vector [2, 2 :: Int32] crops <- TF.render $ TF.constant (TF.Shape [2, 2]) [0, 0, 0, 0 :: Int32] let y = TF.batchToSpaceND x shape crops calculateGradWithShape y x V.fromList [1, 1, 1, 1] @=? dx V.fromList [4, 1, 1, 1] @=? s testSpaceToBatchND :: Test testSpaceToBatchND = testCase "testSpaceToBatchND" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.constant (TF.Shape [1, 2, 2, 1 :: Int64]) [1, 2, 3, 4] shape <- TF.render $ TF.vector [2, 2 :: Int32] paddings <- TF.render $ TF.constant (TF.Shape [2, 2]) [0, 0, 0, 0 :: Int32] let y = TF.spaceToBatchND x shape paddings calculateGradWithShape y x V.fromList [1, 1, 1, 1] @=? dx V.fromList [1, 2, 2, 1] @=? s testSqueeze :: Test testSqueeze = testCase "testSqueeze" $ do ([dx], [s]) <- TF.runSession $ do (x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 3 :: Int64] let y = TF.squeeze x calculateGradWithShape y x V.fromList [1, 1, 1, 1, 1, 1] @=? dx V.fromList [1, 2, 3] @=? s calculateGradWithShape :: TF.Tensor TF.Build Float -> TF.Tensor TF.Value Float -> SessionT IO ([V.Vector Float], [V.Vector Int32]) calculateGradWithShape y x = do gs <- TF.gradients y [x] xs <- TF.run gs (shapes :: [V.Vector Int32]) <- mapM (TF.run . TF.shape) gs return (xs, shapes) testFillGrad :: Test testFillGrad = testCase "testFillGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.scalar (9 :: Float) let shape = TF.vector [2, 3 :: Int32] let y = TF.fill shape x TF.gradients y [x] >>= TF.run V.fromList [6] @=? dx testTileGrad :: Test testTileGrad = testCase "testTileGrad" $ do [dx] <- TF.runSession $ do x <- TF.render $ TF.vector [5, 9 :: Float] let multiples = TF.vector [2 :: Int32] let y = TF.tile x multiples TF.gradients y [x] >>= TF.run V.fromList [2, 2] @=? dx testTile2DGrad :: Test testTile2DGrad = testCase "testTileGrad2D" $ do (dx, shapeDX, shapeX) <- TF.runSession $ do let shape = TF.vector [3, 2 :: Int32] x <- TF.render $ TF.fill shape (TF.scalar (1::Float)) let multiples = TF.vector [2, 3 :: Int32] let y = TF.tile x multiples [dx] <- TF.gradients y [x] TF.run (dx, TF.shape dx, TF.shape x) shapeX @=? (shapeDX :: V.Vector Int32) V.fromList [6, 6, 6, 6, 6, 6::Float] @=? (dx :: V.Vector Float) testResizeBilinearGrad :: Test testResizeBilinearGrad = testCase "testResizeBilinearGrad" $ do (dx, shapeDX, shapeX) <- TF.runSession $ do let shape = TF.vector [1, 2, 2, 1 :: Int32] x <- TF.render $ TF.fill shape (TF.scalar (1 :: Float)) let outSize = TF.vector [4, 4 :: Int32] align = TF.opAttr "align_corners" .~ True y = TF.resizeBilinear' align x outSize [dx] <- TF.gradients y [x] TF.run (dx, TF.shape dx, TF.shape x) shapeX @=? (shapeDX :: V.Vector Int32) let expect = V.fromList [4, 4, 4, 4 :: Float] near = 0.00001 > (V.sum $ V.zipWith (-) expect (dx :: V.Vector Float)) near @=? True matMulGradient :: Test matMulGradient = testCase "matMulGradients" $ do let dfBuild = do x <- TF.render $ TF.zeros $ TF.Shape [3, 1 :: Int64] w <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64] let f = x `TF.matMul` TF.readValue w :: TF.Tensor TF.Build Float dfs <- TF.gradients f [x] return (x, dfs) (xShape, dxShape) <- TF.runSession $ do (x, [dx]) <- TF.build dfBuild TF.run (TF.shape x, TF.shape dx) assertEqual "Shape of gradient must match shape of input" xShape (dxShape :: V.Vector Int32) -- test that gradient of matMul can be taken gradient of matMulGradGrad :: Test matMulGradGrad = testCase "matMulGradGrad" $ do let width = 2 :: Int64 batch = 4 :: Int64 let tower = do x <- TF.render $ TF.zeros $ TF.Shape [batch, 1] w <- TF.zeroInitializedVariable $ TF.Shape [1, width] let f = x `TF.matMul` TF.readValue w l1 <- TF.gradients f [x] let dfdx = head l1 -- avoid MonadFail let f'x = TF.reduceSum dfdx l2 <- TF.gradients f'x [w] -- take gradient again (this time over w) let dfdw = head l2 return [TF.readValue w, TF.expr dfdw] TF.runSession $ do l <- TF.build tower (w, dfdw) <- case l of [w, dfdw] -> pure (w, dfdw) _ -> liftIO $ assertFailure "pattern-match failure in matMulGradMad" (wShape, dfdwShape) <- TF.run (TF.shape w, TF.shape dfdw) liftIO $ assertEqual "Shape of gradient must match input" wShape (dfdwShape :: V.Vector Int32) let step = w `TF.add` dfdw w0 <- TF.run step liftIO $ V.fromList [4, 4 :: Float] @=? w0 -- test that gradient of matMul deals correctly with transpose_a and transpose_b matMulTransposeGradient :: (Bool, Bool) -> Test matMulTransposeGradient txw = testCase ("matMulTransposeGradients " ++ show txw) $ do let (transposeX, transposeW) = txw let dfBuild = do let xShape = TF.Shape [3, 1 :: Int64] let xZeros = TF.zeros xShape x <- TF.render $ if transposeX then TF.matTranspose xZeros else xZeros variable <- TF.zeroInitializedVariable $ TF.Shape [1, 2 :: Int64] let wv = if transposeW then TF.matTranspose (TF.readValue variable) else TF.readValue variable let f = TF.matMul' (transAttrs transposeX transposeW) x wv :: TF.Tensor TF.Build Float w <- TF.render wv ds <- TF.gradients f [x, w] return (x, w, ds) TF.runSession $ do (x, w, d) <- TF.build dfBuild (dx, dw) <- case d of [dx, dw] -> pure (dx, dw) _ -> liftIO $ assertFailure "pattern-match failure in matMulTransposeGradient" xShape <- TF.run $ TF.shape x dxShape <- TF.run $ TF.shape dx liftIO $ assertEqual "xShape must match dxShape" xShape (dxShape :: V.Vector Int32) wShape <- TF.run $ TF.shape w dwShape <- TF.run $ TF.shape dw liftIO $ assertEqual "wShape must match dwShape" wShape (dwShape :: V.Vector Int32) transAttrs :: (TF.Attribute a, TF.Attribute b) => a -> b -> TF.OpDef -> TF.OpDef transAttrs a b = (TF.opAttr "transpose_a" .~ a) . (TF.opAttr "transpose_b" .~ b) batchMatMulGradient :: Test batchMatMulGradient = testCase "batchMatMulGradients" $ do let dfBuild = do x <- TF.render $ TF.zeros $ TF.Shape [2,3, 1 :: Int64] w <- TF.zeroInitializedVariable $ TF.Shape [2,1, 2 :: Int64] let f = x `TF.batchMatMul` TF.readValue w :: TF.Tensor TF.Build Float dfs <- TF.gradients f [x] return (x, dfs) (xShape, dxShape) <- TF.runSession $ do (x, dl) <- TF.build dfBuild dx <- case dl of [dx] -> pure dx _ -> liftIO $ assertFailure "pattern-match failure in batchMatMulGradient" TF.run (TF.shape x, TF.shape dx) assertEqual "Shape of gradient must match shape of input" xShape (dxShape :: V.Vector Int32) -- test that gradient of batchMatMul can be taken gradient of batchMatMulGradGrad :: Test batchMatMulGradGrad = testCase "batchMatMulGradGrad" $ do let width = 2 :: Int64 height = 3 :: Int64 batch = 4 :: Int64 let tower = do x <- TF.render $ TF.zeros $ TF.Shape [batch, height, 1] w <- TF.zeroInitializedVariable $ TF.Shape [batch, 1, width] let f = x `TF.batchMatMul` TF.readValue w l1 <- TF.gradients f [x] let dfdx = head l1 let f'x = TF.sum dfdx (TF.vector [1, 2 :: Int32]) l2 <- TF.gradients f'x [w] -- take gradient again (this time over w) let dfdw = head l2 return [TF.readValue w, TF.expr dfdw] TF.runSession $ do l <- TF.build tower (w, dfdw) <- case l of [w, dfdw] -> pure (w, dfdw) _ -> liftIO $ assertFailure "pattern-match failure in batchMatMulGradGrad" (wShape, dfdwShape) <- TF.run (TF.shape w, TF.shape dfdw) liftIO $ assertEqual "Shape of gradient must match input" wShape (dfdwShape :: V.Vector Int32) let step = w `TF.add` dfdw w0 <- TF.run step liftIO $ V.fromList [3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0 :: Float] @=? w0 -- test that gradient of batchMatMul deals correctly with adj_x and adj_y batchMatMulAdjointGradient :: (Bool, Bool) -> Test batchMatMulAdjointGradient axw = testCase ("batchMatMulAdjointGradients " ++ show axw) $ do let (adjX, adjW) = axw let dfBuild = do let xShape = TF.Shape [2, 3, 1 :: Int64] let xZeros = TF.zeros xShape x <- TF.render $ if adjX then TF.conjugateTranspose xZeros (TF.vector [0, 2, 1 :: Int32]) else xZeros variable <- TF.zeroInitializedVariable $ TF.Shape [2, 1, 2 :: Int64] let wv = if adjW then TF.conjugateTranspose (TF.readValue variable) (TF.vector [0, 2, 1 :: Int32]) else TF.readValue variable let f = TF.batchMatMul' (adjAttrs adjX adjW) x wv :: TF.Tensor TF.Build Float w <- TF.render wv ds <- TF.gradients f [x, w] return (x, w, ds) TF.runSession $ do (x, w, d) <- TF.build dfBuild (dx, dw) <- case d of [dx, dw] -> pure (dx, dw) _ -> liftIO $ assertFailure "pattern-match failure in batchMatMulAdjointGradient" xShape <- TF.run $ TF.shape x dxShape <- TF.run $ TF.shape dx liftIO $ assertEqual "xShape must match dxShape" xShape (dxShape :: V.Vector Int32) wShape <- TF.run $ TF.shape w dwShape <- TF.run $ TF.shape dw liftIO $ assertEqual "wShape must match dwShape" wShape (dwShape :: V.Vector Int32) adjAttrs :: (TF.Attribute x, TF.Attribute y) => x -> y -> TF.OpDef -> TF.OpDef adjAttrs x y = (TF.opAttr "adj_x" .~ x) . (TF.opAttr "adj_y" .~ y) -- TODO check gradient with regard to filter also testConv2DBackpropInputGrad :: Test testConv2DBackpropInputGrad = testCase "testConv2DBackpropInputGrad" $ do (dx, shapeDX, shapeX) <- TF.runSession $ do let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32] -- [batch, h, w, in_channels] let conv_out_shape = TF.vector [1, 1, 1, 1 :: Int32] -- [batch, h, w, out_channels] x <- TF.render $ TF.fill conv_out_shape (TF.scalar (1::Float)) let filterShape = TF.vector [2, 2, 1, 1 :: Int32] -- [fh, fw, inc, out] filter' <- TF.render $ TF.fill filterShape (TF.scalar (1::Float)) let y = TF.conv2DBackpropInput' ( (TF.opAttr "strides" .~ [1::Int64, 1, 1, 1]) . (TF.opAttr "padding" .~ (BS.pack "VALID")) . (TF.opAttr "data_format" .~ (BS.pack "NHWC")) ) conv_input_shape filter' x [dx] <- TF.gradients y [x] TF.run (dx, TF.shape dx, TF.shape x) shapeX @=? (shapeDX :: V.Vector Int32) V.fromList [4::Float] @=? (dx :: V.Vector Float) testDepthwiseConv2dGrad :: Test testDepthwiseConv2dGrad = testCase "testDepthwiseConv2dGrad" $ do (dx, shapeDX, shapeX) <- TF.runSession $ do let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32] x <- TF.render $ TF.fill conv_input_shape (TF.scalar (2 :: Float)) let filterShape = TF.vector [2, 2, 1, 1 :: Int32] filter' <- TF.render $ TF.fill filterShape (TF.scalar (1 :: Float)) let y = TF.depthwiseConv2dNative' ( (TF.opAttr "strides" .~ [1 :: Int64, 1, 1, 1]) . (TF.opAttr "padding" .~ (BS.pack "VALID")) . (TF.opAttr "data_format" .~ (BS.pack "NHWC")) ) x filter' [dx] <- TF.gradients y [x] TF.run (dx, TF.shape dx, TF.shape x) shapeX @=? (shapeDX :: V.Vector Int32) V.fromList [1, 1, 1, 1 :: Float] @=? (dx :: V.Vector Float) -- TODO also test filter gradient testDepthwiseConv2dBackpropInputGrad :: Test testDepthwiseConv2dBackpropInputGrad = testCase "testDepthwiseConv2dBackpropInputGrad" $ do (dx, shapeDX, shapeX) <- TF.runSession $ do let conv_input_shape = TF.vector [1, 2, 2, 1 :: Int32] let conv_out_shape = TF.vector [1, 1, 1, 1 :: Int32] -- [batch, h, w, out_channels] x <- TF.render $ TF.fill conv_out_shape (TF.scalar (1::Float)) let filterShape = TF.vector [2, 2, 1, 1 :: Int32] filter' <- TF.render $ TF.fill filterShape (TF.scalar (1 :: Float)) let y = TF.depthwiseConv2dNativeBackpropInput' ( (TF.opAttr "strides" .~ [1 :: Int64, 1, 1, 1]) . (TF.opAttr "padding" .~ (BS.pack "VALID")) . (TF.opAttr "data_format" .~ (BS.pack "NHWC")) ) conv_input_shape filter' x [dx] <- TF.gradients y [x] TF.run (dx, TF.shape dx, TF.shape x) shapeX @=? (shapeDX :: V.Vector Int32) V.fromList [4::Float] @=? (dx :: V.Vector Float) main :: IO () main = defaultMain [ testGradientSimple , testGradientDisconnected , testGradientIncidental , testGradientPruning , testCreateGraphStateful , testCreateGraphNameScopes , testDiamond , testAddNGradient , testMeanGradient , testMeanGradGrad , testMaxGradient , testConcatGradient , testConcatGradientSimple , testConcatRunAndVerifyGradientsRandom , testMaximumGrad , testMaximumGradGrad , testReluGrad , testReluGradGrad , testTanhGrad , testSigmoidGrad , testExpandDims , testReshape , testPad , testSqrt , testSlice , testBatchToSpaceND , testSpaceToBatchND , testSqueeze , testFillGrad , testTileGrad , testTile2DGrad , testResizeBilinearGrad , matMulGradient , matMulGradGrad , matMulTransposeGradient (False, False) , matMulTransposeGradient (False, True) , matMulTransposeGradient (True, False) , matMulTransposeGradient (True, True) , batchMatMulGradient , batchMatMulGradGrad , batchMatMulAdjointGradient (False, False) , batchMatMulAdjointGradient (False, True) , batchMatMulAdjointGradient (True, False) , batchMatMulAdjointGradient (True, True) , testConv2DBackpropInputGrad , testDepthwiseConv2dGrad , testDepthwiseConv2dBackpropInputGrad ]