proto-lens-0.2.2.0 generates Ord instances for all message types,
so we can remove the orphan instances we previously added.
Dependends on proto-lens-protoc-0.2.2.1 or newer due to google/proto-lens#113.
The main difference between these and the `Ref`-bases ops is the explicit
`readValue` op. I'm not sure how this should interact with gradients
and save/restore, so I'm keeping it as a separate module for now. Once we
figure out the details, we can merge it into `TensorFlow.Ops` and replace
all uses of the old `Ref`-based ops. (That would also fix #92.)
Also replaces our special case newtype `ResourceHandle` to
`Tensor Value ResourceHandle`, where `ResourceHandle` is the TF proto
corresponding to `DT_RESOURCE`.
Distinguish between "rendered" and "unrendered" Tensors.
There are now three types of `Tensor`:
- `Tensor Value a`: rendered value
- `Tensor Ref a`: rendered reference
- `Tensor Build a` : unrendered value
The extra bookkeeping makes it easier to track (and enforce) which tensors are
rendered or not. For examples where this has been confusing in the past, see
With this change, pure ops look similar to before, returning `Tensor Build`
instead of `Tensor Value`. "Stateful" (monadic) ops are unchanged. For
example:
add :: OneOf [..] t => Tensor v'1 t -> Tensor v'2 t -> Tensor Build t
assign :: (MonadBuild m, TensorType t)
=> Tensor Ref t -> Tensor v'2 t -> m (Tensor Ref t)
The `gradients` function now requires that the variables over which it's
differentiating are pre-rendered:
gradients :: (..., Rendered v2) => Tensor v1 a -> [Tensor v2 a]
-> m [Tensor Value a]
(`Rendered v2` means that `v2` is either a `Ref` or a `Value`.)
Additionally, the implementation of `gradients` now takes care to render every
intermediate value when performing the reverse accumulation. I suspect this
fixes an exponential blowup for complicated expressions.
Each op `foo :: ...` now has a corresponding `foo' :: OpParams -> ...`
which lets you set optional attributes. `OpParams` is currently a type alias for
`OpDef -> OpDef`. In the future we should consider more type safety, e.g.,
using type-level strings and OverloadedLabels for optional attributes.
I used it to replace a few manual `buildOp`s in our code with the codegenerated
ops, now that it's easier to set attributes. I also removed `tensorAttr` and
`named` since it's now possible to set those op attributes directly.
Although this clutters up the API a bit, I think it's simpler than using type
classes to implement optional arguments (as in, for example, `Text.Printf`) --
especially in terms of type inference with the rest of the library.
This change allows us to reenable the rest of the ResourceHandle ops, and
future-proofs us against more being added. It removes the custom logic that
assumed there was a "dtype" attribute to guess what the type parameter is
(which wasn't true in general.)
When we switch to ResourceHandle (e.g., for queues and variables) we can add
parameters to the wrapper types like "Queue" on a case-by-case basis.