1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-11-22 19:09:43 +01:00

Add gradient for slice function (#234)

This commit is contained in:
erikabor 2019-03-26 21:30:50 +01:00 committed by fkm3
parent 666dce94bd
commit 3cfd96ef08
2 changed files with 45 additions and 2 deletions

View file

@ -710,6 +710,27 @@ opGrad "Pad" _ [toT -> x, toT -> padPattern] [dz] =
gradientSliceBegin = CoreOps.reshape padPatternSliced rankx
gradientSliceSize = shape (x :: Tensor Build Float)
-- Gradient for Slice
-- Create an Nx2 padding where N is the rank of (grad of) Slice and the first
-- column represents how many zeros are to be prepended for each dimension, and the second
-- column indicates how many zeros are appended.
-- The number of zeros to prepend is the shape of the beginvec.
-- The number of zeros to append is the shape of the inputvec
-- elementwise-subtracted by both the beginvec and sizevec.
-- Some more reshaping is needed to assemble this tensor with the
-- right dimensions.
opGrad "Slice" _ [toT -> inputvec, toT -> beginvec, _] [dz] =
[Just $ CoreOps.pad dz paddings, Nothing, Nothing]
where
v1 = vector [1 :: Int32]
inputRank' = CoreOps.rank (inputvec :: Tensor Build Float)
-- For some reason inputRank' has an empty shape
inputRank = CoreOps.reshape inputRank' v1
padShape = CoreOps.concat 0 [inputRank, v1]
beforePad = CoreOps.reshape beginvec padShape
afterPad = CoreOps.reshape (shape inputvec - shape dz - beginvec) padShape
paddings = CoreOps.concat 1 [beforePad, afterPad]
-- TODO: This could be either Int32 or Int64.
opGrad "BatchToSpaceND" _ [_, toT @Int32 -> blockShape, toT @Int32 -> crops] [dz] =
[Just $ CoreOps.spaceToBatchND dz blockShape crops, Nothing, Nothing]
@ -862,6 +883,7 @@ numOutputs o =
"Reshape" -> 1
"Select" -> 1
"Size" -> 1
"Slice" -> 1
"SoftmaxCrossEntropyWithLogits" -> 2
"SpaceToBatchND" -> 1
"SparseSegmentSum" -> 1

View file

@ -32,9 +32,9 @@ import Control.Monad(forM_, replicateM, zipWithM)
import Control.Monad.IO.Class (liftIO)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF (conv2DBackpropInput', max, maximum, tile, pad, batchToSpaceND, spaceToBatchND, squeeze, sqrt)
import qualified TensorFlow.GenOps.Core as TF (conv2DBackpropInput', max, maximum, tile, pad, batchToSpaceND, spaceToBatchND, squeeze, sqrt, slice, shape)
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Ops as TF hiding (zeroInitializedVariable)
import qualified TensorFlow.Ops as TF hiding (zeroInitializedVariable, shape)
import qualified TensorFlow.Output as TF
import qualified TensorFlow.Types as TF
import qualified TensorFlow.Variable as TF
@ -324,6 +324,7 @@ testPad =
V.fromList [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] @=? dx
V.fromList [2, 2, 3] @=? s
testSqrt :: Test
testSqrt = testCase "testSqrt" $ do
[dx] <- TF.runSession $ do
@ -332,6 +333,25 @@ testSqrt = testCase "testSqrt" $ do
TF.gradients y [x] >>= TF.run
V.fromList [2] @=? dx
testSlice :: Test
testSlice =
testCase "testSlice" $ do
([dx], [s]) <-
TF.runSession $ do
(x :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [2, 3, 4 :: Int64]
(z :: TF.Tensor TF.Value Float) <- TF.render $ TF.zeros $ TF.Shape [1, 2, 2 :: Int64]
let y = TF.slice x (TF.constant (TF.Shape [3]) [1, 1, 1 :: Int32]) (TF.shape z)
calculateGradWithShape y x
let expected =
[0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 1, 1, 0,
0, 1, 1, 0]
V.fromList expected @=? dx
V.fromList [2, 3, 4] @=? s
testBatchToSpaceND :: Test
testBatchToSpaceND =
testCase "testBatchToSpaceND" $ do
@ -526,6 +546,7 @@ main = defaultMain
, testReshape
, testPad
, testSqrt
, testSlice
, testBatchToSpaceND
, testSpaceToBatchND
, testSqueeze