1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2025-01-11 11:29:47 +01:00

Misc MNIST example cleanup (#9)

* Use native oneHot op in the example code. It didn't exist when this was originally written.
* Misc cleanup in MNIST example

- Use unspecified dimension for batch size in model. This simplifies the
  code for the test set.
- Move error rate calculation into model.
This commit is contained in:
fkm3 2016-10-26 11:14:38 -07:00 committed by Greg Steuck
parent 54eddcc6bd
commit 03a3a6d086
2 changed files with 53 additions and 59 deletions

View file

@ -12,21 +12,24 @@
-- See the License for the specific language governing permissions and
-- limitations under the License.
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE OverloadedLists #-}
import Control.Monad (zipWithM, when, forM, forM_)
import Control.Monad.IO.Class (liftIO)
import Data.Int (Int32, Int64)
import Data.List (genericLength)
import qualified Data.Text.IO as T
import qualified Data.Vector as V
import qualified TensorFlow.ControlFlow as TF
import qualified TensorFlow.Build as TF
import qualified TensorFlow.ControlFlow as TF
import qualified TensorFlow.Gradient as TF
import qualified TensorFlow.Nodes as TF
import qualified TensorFlow.Ops as TF
import qualified TensorFlow.Session as TF
import qualified TensorFlow.Tensor as TF
import qualified TensorFlow.Types as TF
import qualified TensorFlow.Gradient as TF
import TensorFlow.Examples.MNIST.InputData
import TensorFlow.Examples.MNIST.Parse
@ -41,30 +44,10 @@ randomParam width (TF.Shape shape) =
where
stddev = TF.scalar (1 / sqrt (fromIntegral width))
-- Types must match due to model structure (sparseToDense requires
-- index types to match)
reduceMean xs = TF.mean xs (TF.scalar (0 :: Int32))
-- Types must match due to model structure.
type LabelType = Int32
type BatchSize = Int32
-- | Convert scalar labels to one-hot vectors.
labelClasses :: TF.Tensor TF.Value LabelType
-> LabelType
-> BatchSize
-> TF.Tensor TF.Value Float
labelClasses labels numClasses batchSize =
let indices = TF.range 0 (TF.scalar batchSize) 1
concated = TF.concat 1 [TF.expandDims indices 1, TF.expandDims labels 1]
in TF.sparseToDense concated
(TF.constant [2] [batchSize, numClasses])
1 {- ON value -}
0 {- default (OFF) value -}
-- | Fraction of elements that differ between two vectors.
errorRate :: Eq a => V.Vector a -> V.Vector a -> Double
errorRate xs ys = fromIntegral (len - numCorrect) / fromIntegral len
where
numCorrect = V.length $ V.filter id $ V.zipWith (==) xs ys
len = V.length xs
data Model = Model {
train :: TF.TensorData Float -- ^ images
@ -72,10 +55,15 @@ data Model = Model {
-> TF.Session ()
, infer :: TF.TensorData Float -- ^ images
-> TF.Session (V.Vector LabelType) -- ^ predictions
, errorRate :: TF.TensorData Float -- ^ images
-> TF.TensorData LabelType
-> TF.Session Float
}
createModel :: Int64 -> TF.Build Model
createModel batchSize = do
createModel :: TF.Build Model
createModel = do
-- Use -1 batch size to support variable sized batches.
let batchSize = -1
-- Inputs.
images <- TF.placeholder [batchSize, numPixels]
-- Hidden layer.
@ -95,22 +83,29 @@ createModel batchSize = do
-- Create training action.
labels <- TF.placeholder [batchSize]
let labelVecs = labelClasses labels 10 (fromIntegral batchSize)
loss = fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
let labelVecs = TF.oneHot labels (fromIntegral numLabels) 1 0
loss =
reduceMean $ fst $ TF.softmaxCrossEntropyWithLogits logits labelVecs
params = [hiddenWeights, hiddenBiases, logitWeights, logitBiases]
grads <- TF.gradients loss params
let lr = TF.scalar $ 0.001 / fromIntegral batchSize
applyGrad param grad
= TF.assign param $ param `TF.sub` (lr * grad)
let lr = TF.scalar 0.00001
applyGrad param grad = TF.assign param $ param `TF.sub` (lr * grad)
trainStep <- TF.group =<< zipWithM applyGrad params grads
let correctPredictions = TF.equal predict labels
errorRateTensor <- TF.render $ 1 - reduceMean (TF.cast correctPredictions)
return Model {
train = \imFeed lFeed -> TF.runWithFeeds_ [
TF.feed images imFeed
, TF.feed labels lFeed
] trainStep
train = \imFeed lFeed -> TF.runWithFeeds_ [
TF.feed images imFeed
, TF.feed labels lFeed
] trainStep
, infer = \imFeed -> TF.runWithFeeds [TF.feed images imFeed] predict
, errorRate = \imFeed lFeed -> TF.unScalar <$> TF.runWithFeeds [
TF.feed images imFeed
, TF.feed labels lFeed
] errorRateTensor
}
main = TF.runSession $ do
@ -120,40 +115,36 @@ main = TF.runSession $ do
testImages <- liftIO (readMNISTSamples =<< testImageData)
testLabels <- liftIO (readMNISTLabels =<< testLabelData)
let batchSize = 100 :: Int64
-- Create the model.
model <- TF.build $ createModel batchSize
model <- TF.build createModel
-- Helpers for generate batches.
let selectBatch i xs = take size $ drop (i * size) $ cycle xs
where size = fromIntegral batchSize
let getImageBatch i xs = TF.encodeTensorData
[batchSize, numPixels]
$ fromIntegral <$> mconcat (selectBatch i xs)
let getExpectedLabelBatch i xs =
fromIntegral <$> V.fromList (selectBatch i xs)
-- Functions for generating batches.
let encodeImageBatch xs =
TF.encodeTensorData [genericLength xs, numPixels]
(fromIntegral <$> mconcat xs)
let encodeLabelBatch xs =
TF.encodeTensorData [genericLength xs]
(fromIntegral <$> V.fromList xs)
let batchSize = 100
let selectBatch i xs = take batchSize $ drop (i * batchSize) (cycle xs)
-- Train.
forM_ ([0..1000] :: [Int]) $ \i -> do
let images = getImageBatch i trainingImages
labels = getExpectedLabelBatch i trainingLabels
train model images (TF.encodeTensorData [batchSize] labels)
let images = encodeImageBatch (selectBatch i trainingImages)
labels = encodeLabelBatch (selectBatch i trainingLabels)
train model images labels
when (i `mod` 100 == 0) $ do
preds <- infer model images
liftIO $ putStrLn $
"training error " ++ show (errorRate preds labels * 100)
err <- errorRate model images labels
liftIO $ putStrLn $ "training error " ++ show (err * 100)
liftIO $ putStrLn ""
-- Test.
let numTestBatches = length testImages `div` fromIntegral batchSize
testPreds <- fmap mconcat $ forM [0..numTestBatches] $ \i -> do
infer model (getImageBatch i testImages)
let testExpected = fromIntegral <$> V.fromList testLabels
liftIO $ putStrLn $
"test error " ++ show (errorRate testPreds testExpected * 100)
testErr <- errorRate model (encodeImageBatch testImages)
(encodeLabelBatch testLabels)
liftIO $ putStrLn $ "test error " ++ show (testErr * 100)
-- Show some predictions.
testPreds <- infer model (encodeImageBatch testImages)
liftIO $ forM_ ([0..3] :: [Int]) $ \i -> do
putStrLn ""
T.putStrLn $ drawMNIST $ testImages !! i

View file

@ -65,12 +65,15 @@ module TensorFlow.Ops
, CoreOps.cast
, CoreOps.concat
, constant
, CoreOps.equal
, expandDims
, initializedVariable
, zeroInitializedVariable
, CoreOps.fill
, CoreOps.oneHot
, CoreOps.matMul
, matTranspose
, CoreOps.mean
, CoreOps.mul
, CoreOps.neg
, CoreOps.pack