1
0
Fork 0
mirror of https://github.com/tensorflow/haskell.git synced 2024-11-23 11:29:43 +01:00
tensorflow-haskell/README.md

160 lines
5.1 KiB
Markdown
Raw Normal View History

2018-04-11 01:32:53 +02:00
![Build Status](https://storage.googleapis.com/tensorflow-haskell-kokoro-build-badges/github.png)
2016-10-24 21:26:42 +02:00
The tensorflow-haskell package provides Haskell bindings to
[TensorFlow](https://www.tensorflow.org/).
This is not an official Google product.
# Documentation
https://tensorflow.github.io/haskell/haddock/
2017-11-11 23:01:52 +01:00
[TensorFlow.Core](https://tensorflow.github.io/haskell/haddock/tensorflow-0.1.0.2/TensorFlow-Core.html)
is a good place to start.
# Examples
Neural network model for the MNIST dataset: [code](tensorflow-mnist/app/Main.hs)
Toy example of a linear regression model
([full code](tensorflow-ops/tests/RegressionTest.hs)):
```haskell
import Control.Monad (replicateM, replicateM_)
import System.Random (randomIO)
import Test.HUnit (assertBool)
import qualified TensorFlow.Core as TF
import qualified TensorFlow.GenOps.Core as TF
import qualified TensorFlow.Minimize as TF
import qualified TensorFlow.Ops as TF hiding (initializedVariable)
import qualified TensorFlow.Variable as TF
main :: IO ()
main = do
-- Generate data where `y = x*3 + 8`.
xData <- replicateM 100 randomIO
let yData = [x*3 + 8 | x <- xData]
-- Fit linear regression model.
(w, b) <- fit xData yData
assertBool "w == 3" (abs (3 - w) < 0.001)
assertBool "b == 8" (abs (8 - b) < 0.001)
fit :: [Float] -> [Float] -> IO (Float, Float)
fit xData yData = TF.runSession $ do
-- Create tensorflow constants for x and y.
let x = TF.vector xData
y = TF.vector yData
-- Create scalar variables for slope and intercept.
w <- TF.initializedVariable 0
b <- TF.initializedVariable 0
-- Define the loss function.
let yHat = (x `TF.mul` TF.readValue w) `TF.add` TF.readValue b
loss = TF.square (yHat `TF.sub` y)
-- Optimize with gradient descent.
trainStep <- TF.minimizeWith (TF.gradientDescent 0.001) loss [w, b]
replicateM_ 1000 (TF.run trainStep)
-- Return the learned parameters.
(TF.Scalar w', TF.Scalar b') <- TF.run (TF.readValue w, TF.readValue b)
return (w', b')
```
# Installation Instructions
2016-10-24 21:26:42 +02:00
Note: building this repository with `stack` requires version `1.4.0` or newer.
Check your stack version with `stack --version` in a terminal.
## Build with Docker on Linux
2016-10-24 21:26:42 +02:00
2016-10-25 18:53:35 +02:00
As an expedient we use [docker](https://www.docker.com/) for building. Once you have docker
2016-10-24 21:26:42 +02:00
working, the following commands will compile and run the tests.
git clone --recursive https://github.com/tensorflow/haskell.git tensorflow-haskell
cd tensorflow-haskell
IMAGE_NAME=tensorflow/haskell:v0
docker build -t $IMAGE_NAME docker
# TODO: move the setup step to the docker script.
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test
There is also a demo application:
cd tensorflow-mnist
stack --docker --docker-image=$IMAGE_NAME build --exec Main
### Docker GPU support
If you want to use GPU you can do:
IMAGE_NAME=tensorflow/haskell:1.3.0-gpu
docker build -t $IMAGE_NAME docker/gpu
We need stack to use nvidia-docker by using a 'docker' wrapper script. This will shadow the normal docker command.
ln -s `pwd`/tools/nvidia-docker-wrapper.sh <somewhere in your path>/docker
stack --docker --docker-image=$IMAGE_NAME setup
stack --docker --docker-image=$IMAGE_NAME test
## Build on macOS
Run the [install_macos_dependencies.sh](./tools/install_macos_dependencies.sh)
script in the `tools/` directory. The script installs dependencies
2017-08-21 21:59:22 +02:00
via [Homebrew](https://brew.sh/) and then downloads and installs the TensorFlow
library on your machine under `/usr/local`.
After running the script to install system dependencies, build the project with stack:
stack test
## Build on NixOS
The `shell.nix` provides an environment containing the necessary
dependencies. To build, run:
$ stack --nix build
or alternatively you can run
$ nix-shell
to enter the environment and build the project. Note, that it is an emulation
of common Linux environment rather than full-featured Nix package expression.
No exportable Nix package will appear, but local development is possible.
2017-08-21 21:59:22 +02:00
# Related Projects
## Statically validated tensor shapes
https://github.com/helq/tensorflow-haskell-deptyped is experimenting with using dependent types to statically validate tensor shapes. May be merged with this repository in the future.
Example:
```haskell
{-# LANGUAGE DataKinds, ScopedTypeVariables #-}
import Data.Maybe (fromJust)
import Data.Vector.Sized (Vector, fromList)
import TensorFlow.DepTyped
test :: IO (Vector 8 Float)
test = runSession $ do
(x :: Placeholder "x" '[4,3] Float) <- placeholder
let elems1 = fromJust $ fromList [1,2,3,4,1,2]
elems2 = fromJust $ fromList [5,6,7,8]
(w :: Tensor '[3,2] '[] Build Float) = constant elems1
(b :: Tensor '[4,1] '[] Build Float) = constant elems2
y = (x `matMul` w) `add` b -- y shape: [4,2] (b shape is [4.1] but `add` broadcasts it to [4,2])
let (inputX :: TensorData "x" [4,3] Float) =
encodeTensorData . fromJust $ fromList [1,2,3,4,1,0,7,9,5,3,5,4]
runWithFeeds (feed x inputX :~~ NilFeedList) y
main :: IO ()
main = test >>= print
```
# License
2017-08-21 21:59:22 +02:00
This project is licensed under the terms of the [Apache 2.0 license](LICENSE).