servant/servant/src/Servant/API/Stream.hs

243 lines
8.5 KiB
Haskell

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_HADDOCK not-home #-}
module Servant.API.Stream (
Stream,
StreamGet,
StreamPost,
StreamBody,
-- * Source
--
-- | 'SourceIO' are equivalent to some *source* in streaming libraries.
SourceIO,
ToSourceIO (..),
FromSourceIO (..),
-- ** Auxiliary classes
SourceToSourceIO (..),
-- * Framing
FramingRender (..),
FramingUnrender (..),
-- ** Strategies
NoFraming,
NewlineFraming,
NetstringFraming,
) where
import Control.Applicative
((<|>))
import Control.Monad.IO.Class
(MonadIO (..))
import qualified Data.Attoparsec.ByteString as A
import qualified Data.Attoparsec.ByteString.Char8 as A8
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as LBS
import qualified Data.ByteString.Lazy.Char8 as LBS8
import Data.List.NonEmpty
(NonEmpty (..))
import Data.Monoid
((<>))
import Data.Proxy
(Proxy)
import Data.Typeable
(Typeable)
import GHC.Generics
(Generic)
import GHC.TypeLits
(Nat)
import Network.HTTP.Types.Method
(StdMethod (..))
import Servant.Types.SourceT
-- | A Stream endpoint for a given method emits a stream of encoded values at a
-- given @Content-Type@, delimited by a @framing@ strategy.
-- Type synonyms are provided for standard methods.
--
data Stream (method :: k1) (status :: Nat) (framing :: *) (contentType :: *) (a :: *)
deriving (Typeable, Generic)
type StreamGet = Stream 'GET 200
type StreamPost = Stream 'POST 200
-- | A stream request body.
--
-- TODO: add mods
data StreamBody (framing :: *) (contentType :: *) (a :: *)
deriving (Typeable, Generic)
-------------------------------------------------------------------------------
-- Sources
-------------------------------------------------------------------------------
-- | Stream endpoints may be implemented as producing a @'SourceIO' chunk@.
--
-- Clients reading from streaming endpoints can be implemented as consuming a
-- @'SourceIO' chunk@.
--
type SourceIO = SourceT IO
-- | 'ToSourceIO' is intended to be implemented for types such as Conduit, Pipe,
-- etc. By implementing this class, all such streaming abstractions can be used
-- directly as endpoints.
class ToSourceIO chunk a | a -> chunk where
toSourceIO :: a -> SourceIO chunk
-- | Auxiliary class for @'ToSourceIO' x ('SourceT' m x)@ instance.
class SourceToSourceIO m where
sourceToSourceIO :: SourceT m a -> SourceT IO a
instance SourceToSourceIO IO where
sourceToSourceIO = id
-- | Relax to use auxiliary class, have m
instance SourceToSourceIO m => ToSourceIO chunk (SourceT m chunk) where
toSourceIO = sourceToSourceIO
instance ToSourceIO a (NonEmpty a) where
toSourceIO (x :| xs) = fromStepT (Yield x (foldr Yield Stop xs))
instance ToSourceIO a [a] where
toSourceIO = source
-- | 'FromSourceIO' is intended to be implemented for types such as Conduit,
-- Pipe, etc. By implementing this class, all such streaming abstractions can
-- be used directly on the client side for talking to streaming endpoints.
class FromSourceIO chunk a | a -> chunk where
fromSourceIO :: SourceIO chunk -> a
instance MonadIO m => FromSourceIO a (SourceT m a) where
fromSourceIO = sourceFromSourceIO
sourceFromSourceIO :: forall m a. MonadIO m => SourceT IO a -> SourceT m a
sourceFromSourceIO src =
SourceT $ \k ->
k $ Effect $ liftIO $ unSourceT src (return . go)
where
go :: StepT IO a -> StepT m a
go Stop = Stop
go (Error err) = Error err
go (Skip s) = Skip (go s)
go (Effect ms) = Effect (liftIO (fmap go ms))
go (Yield x s) = Yield x (go s)
-- This fires e.g. in Client.lhs
-- {-# OPTIONS_GHC -ddump-simpl -ddump-rule-firings -ddump-to-file #-}
{-# NOINLINE [2] sourceFromSourceIO #-}
{-# RULES "sourceFromSourceIO @IO" sourceFromSourceIO = id :: SourceT IO a -> SourceT IO a #-}
-------------------------------------------------------------------------------
-- Framing
-------------------------------------------------------------------------------
-- | The 'FramingRender' class provides the logic for emitting a framing strategy.
-- The strategy transforms a @'SourceT' m a@ into @'SourceT' m 'LBS.ByteString'@,
-- therefore it can prepend, append and intercalate /framing/ structure
-- around chunks.
--
-- /Note:/ as the @'Monad' m@ is generic, this is pure transformation.
--
class FramingRender strategy where
framingRender :: Monad m => Proxy strategy -> (a -> LBS.ByteString) -> SourceT m a -> SourceT m LBS.ByteString
-- | The 'FramingUnrender' class provides the logic for parsing a framing
-- strategy.
class FramingUnrender strategy where
framingUnrender :: Monad m => Proxy strategy -> (LBS.ByteString -> Either String a) -> SourceT m BS.ByteString -> SourceT m a
-------------------------------------------------------------------------------
-- NoFraming
-------------------------------------------------------------------------------
-- | A framing strategy that does not do any framing at all, it just passes the
-- input data This will be used most of the time with binary data, such as
-- files
data NoFraming
instance FramingRender NoFraming where
framingRender _ = fmap
-- | As 'NoFraming' doesn't have frame separators, we take the chunks
-- as given and try to convert them one by one.
--
-- That works well when @a@ is a 'ByteString'.
instance FramingUnrender NoFraming where
framingUnrender _ f = mapStepT go
where
go Stop = Stop
go (Error err) = Error err
go (Skip s) = Skip (go s)
go (Effect ms) = Effect (fmap go ms)
go (Yield x s) = case f (LBS.fromStrict x) of
Right y -> Yield y (go s)
Left err -> Error err
-------------------------------------------------------------------------------
-- NewlineFraming
-------------------------------------------------------------------------------
-- | A simple framing strategy that has no header or termination, and inserts a
-- newline character between each frame. This assumes that it is used with a
-- Content-Type that encodes without newlines (e.g. JSON).
data NewlineFraming
instance FramingRender NewlineFraming where
framingRender _ f = mapStepT go0 where
go0 Stop = Stop
go0 (Error err) = Error err
go0 (Skip s) = Skip (go0 s)
go0 (Yield x s) = Yield (f x) (go s)
go0 (Effect ms) = Effect (fmap go0 ms)
go = fmap (\x -> "\n" <> f x)
instance FramingUnrender NewlineFraming where
framingUnrender _ f = transformWithAtto $ do
bs <- A.takeWhile (/= 10)
() <$ A.word8 10 <|> A.endOfInput
either fail pure (f (LBS.fromStrict bs))
-------------------------------------------------------------------------------
-- NetstringFraming
-------------------------------------------------------------------------------
-- | The netstring framing strategy as defined by djb:
-- <http://cr.yp.to/proto/netstrings.txt>
--
-- Any string of 8-bit bytes may be encoded as @[len]":"[string]","@. Here
-- @[string]@ is the string and @[len]@ is a nonempty sequence of ASCII digits
-- giving the length of @[string]@ in decimal. The ASCII digits are @<30>@ for
-- 0, @<31>@ for 1, and so on up through @<39>@ for 9. Extra zeros at the front
-- of @[len]@ are prohibited: @[len]@ begins with @<30>@ exactly when
-- @[string]@ is empty.
--
-- For example, the string @"hello world!"@ is encoded as
-- @<31 32 3a 68 65 6c 6c 6f 20 77 6f 72 6c 64 21 2c>@,
-- i.e., @"12:hello world!,"@.
-- The empty string is encoded as @"0:,"@.
--
data NetstringFraming
instance FramingRender NetstringFraming where
framingRender _ f = fmap $ \x ->
let bs = f x
in LBS8.pack (show (LBS8.length bs)) <> ":" <> bs <> ","
instance FramingUnrender NetstringFraming where
framingUnrender _ f = transformWithAtto $ do
len <- A8.decimal
_ <- A8.char ':'
bs <- A.take len
_ <- A8.char ','
either fail pure (f (LBS.fromStrict bs))