servant/doc/cookbook/generic/Generic.lhs

142 lines
3.6 KiB
Plaintext
Raw Normal View History

2018-07-04 21:59:43 +02:00
# Using generics
```haskell
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
module Main (main, api, getLink, routesLinks, cliGet) where
2018-07-04 21:59:43 +02:00
2018-10-23 08:41:58 +02:00
import Control.Exception (throwIO)
import Control.Monad.Trans.Reader (ReaderT, runReaderT)
import Data.Proxy (Proxy (..))
import Network.Wai.Handler.Warp (run)
import System.Environment (getArgs)
2018-07-04 21:59:43 +02:00
import Servant
import Servant.Client
import Servant.API.Generic
import Servant.Client.Generic
import Servant.Server.Generic
```
The usage is simple, if you only need a collection of routes.
First you define a record with field types prefixed by a parameter `route`:
```haskell
data Routes route = Routes
{ _get :: route :- Capture "id" Int :> Get '[JSON] String
, _put :: route :- ReqBody '[JSON] Int :> Put '[JSON] Bool
}
deriving (Generic)
```
Then we'll use this data type to define API, links, server and client.
## API
You can get a `Proxy` of the API using `genericApi`:
```haskell
api :: Proxy (ToServantApi Routes)
api = genericApi (Proxy :: Proxy Routes)
```
It's recommended to use `genericApi` function, as then you'll get
2018-07-04 21:59:43 +02:00
better error message, for example if you forget to `derive Generic`.
## Links
The clear advantage of record-based generics approach, is that
we can get safe links very conveniently. We don't need to define endpoint types,
2018-07-04 21:59:43 +02:00
as field accessors work as proxies:
```haskell
getLink :: Int -> Link
getLink = fieldLink _get
```
We can also get all links at once, as a record:
```haskell
routesLinks :: Routes (AsLink Link)
routesLinks = allFieldLinks
```
## Client
Even more power starts to show when we generate a record of client functions.
Here we use `genericClientHoist` function, which lets us simultaneously
2018-07-04 21:59:43 +02:00
hoist the monad, in this case from `ClientM` to `IO`.
```haskell
cliRoutes :: Routes (AsClientT IO)
cliRoutes = genericClientHoist
(\x -> runClientM x env >>= either throwIO return)
where
env = error "undefined environment"
cliGet :: Int -> IO String
cliGet = _get cliRoutes
```
## Server
Finally, probably the most handy usage: we can convert record of handlers into
the server implementation:
```haskell
record :: Routes AsServer
record = Routes
{ _get = return . show
, _put = return . odd
}
app :: Application
app = genericServe record
main :: IO ()
main = do
args <- getArgs
case args of
("run":_) -> do
putStrLn "Starting cookbook-generic at http://localhost:8000"
run 8000 app
-- see this cookbook below for custom-monad explanation
("run-custom-monad":_) -> do
putStrLn "Starting cookbook-generic with a custom monad at http://localhost:8000"
run 8000 (appMyMonad AppCustomState)
2018-07-04 21:59:43 +02:00
_ -> putStrLn "To run, pass 'run' argument: cabal new-run cookbook-generic run"
```
## Using generics together with a custom monad
If your app uses a custom monad, here's how you can combine it with
generics.
```haskell
data AppCustomState =
AppCustomState
type AppM = ReaderT AppCustomState Handler
apiMyMonad :: Proxy (ToServantApi Routes)
apiMyMonad = genericApi (Proxy :: Proxy Routes)
getRouteMyMonad :: Int -> AppM String
getRouteMyMonad = return . show
putRouteMyMonad :: Int -> AppM Bool
putRouteMyMonad = return . odd
recordMyMonad :: Routes (AsServerT AppM)
recordMyMonad = Routes {_get = getRouteMyMonad, _put = putRouteMyMonad}
-- natural transformation
nt :: AppCustomState -> AppM a -> Handler a
nt s x = runReaderT x s
appMyMonad :: AppCustomState -> Application
appMyMonad state = genericServeT (nt state) recordMyMonad