jamulus/src/resample.cpp
2009-02-22 11:07:18 +00:00

226 lines
7.7 KiB
C++
Executable file

/******************************************************************************\
* Copyright (c) 2004-2009
*
* Author(s):
* Volker Fischer
*
* Description:
* Resample routine for arbitrary sample-rate conversions in a low range.
* The algorithm is based on a polyphase structure. We upsample the input
* signal with a factor INTERP_DECIM_I_D1 and calculate two successive samples
* whereby we perform a linear interpolation between these two samples to get
* an arbitraty sample grid.
*
* The polyphase filter is calculated with Matlab(TM), the associated file
* is ResampleFilter.m.
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#include "resample.h"
/******************************************************************************\
* Stereo Audio Resampler *
\******************************************************************************/
void CStereoAudioResample::ResampleStereo ( CVector<double>& vecdInput,
CVector<double>& vecdOutput )
{
int j;
if ( dRation == 1.0 )
{
// if ratio is 1, no resampling is needed, just copy vector
vecdOutput = vecdInput;
}
else
{
const int iTwoTimesNumTaps = 2 * iNumTaps;
/* move old data from the end to the history part of the buffer and
add new data (shift register) */
// shift old values
int iMovLen = iStereoInputBlockSize;
for ( j = 0; j < iTwoTimesNumTaps; j++ )
{
vecdIntBuffStereo[j] = vecdIntBuffStereo[iMovLen++];
}
// add new block of data
int iBlockEnd = iTwoTimesNumTaps;
for ( j = 0; j < iStereoInputBlockSize; j++ )
{
vecdIntBuffStereo[iBlockEnd++] = vecdInput[j];
}
// main loop
for ( j = 0; j < iMonoOutputBlockSize; j++ )
{
// calculate filter phase
const int ip = (int) ( j * iI / dRation ) % iI;
// sample position in stereo input vector
const int in = 2 * ( (int) ( j / dRation ) + iNumTaps - 1 );
// convolution
double dyL = 0.0;
double dyR = 0.0;
for ( int i = 0; i < iNumTaps; i++ )
{
const double dCurFiltTap = pFiltTaps[ip + i * iI];
const int iCurSamplePos = in - 2 * i;
dyL += dCurFiltTap * vecdIntBuffStereo[iCurSamplePos];
dyR += dCurFiltTap * vecdIntBuffStereo[iCurSamplePos + 1];
}
vecdOutput[2 * j] = dyL;
vecdOutput[2 * j + 1] = dyR;
}
}
}
void CStereoAudioResample::ResampleMono ( CVector<double>& vecdInput,
CVector<double>& vecdOutput )
{
int j;
if ( dRation == 1.0 )
{
// if ratio is 1, no resampling is needed, just copy vector
vecdOutput = vecdInput;
}
else
{
/* move old data from the end to the history part of the buffer and
add new data (shift register) */
// shift old values
int iMovLen = iMonoInputBlockSize;
for ( j = 0; j < iNumTaps; j++ )
{
vecdIntBuffMono[j] = vecdIntBuffMono[iMovLen++];
}
// add new block of data
int iBlockEnd = iNumTaps;
for ( j = 0; j < iMonoInputBlockSize; j++ )
{
vecdIntBuffMono[iBlockEnd++] = vecdInput[j];
}
// main loop
for ( j = 0; j < iMonoOutputBlockSize; j++ )
{
// calculate filter phase
const int ip = (int) ( j * iI / dRation ) % iI;
// sample position in input vector
const int in = (int) ( j / dRation ) + iNumTaps - 1;
// convolution
double dy = 0.0;
for ( int i = 0; i < iNumTaps; i++ )
{
dy += pFiltTaps[ip + i * iI] * vecdIntBuffMono[in - i];
}
vecdOutput[j] = dy;
}
}
}
void CStereoAudioResample::Init ( const int iNewMonoInputBlockSize,
const int iFrom,
const int iTo )
{
dRation = ( (double) iTo ) / iFrom;
iMonoInputBlockSize = iNewMonoInputBlockSize;
iStereoInputBlockSize = 2 * iNewMonoInputBlockSize;
iMonoOutputBlockSize = (int) ( iNewMonoInputBlockSize * dRation );
// set correct parameters
if ( iFrom == SND_CRD_SAMPLE_RATE ) // downsampling case
{
switch ( iTo )
{
case ( SND_CRD_SAMPLE_RATE / 2 ): // 48 kHz to 24 kHz
pFiltTaps = fResTaps2;
iNumTaps = INTERP_I_2 * NUM_TAPS_PER_PHASE2;
iI = DECIM_D_2;
break;
case ( SND_CRD_SAMPLE_RATE * 7 / 12 ): // 48 kHz to 28 kHz
pFiltTaps = fResTaps12_7;
iNumTaps = INTERP_I_12_7 * NUM_TAPS_PER_PHASE12_7;
iI = DECIM_D_12_7;
break;
case ( SND_CRD_SAMPLE_RATE * 2 / 3 ): // 48 kHz to 32 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = INTERP_I_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = DECIM_D_3_2;
break;
case SND_CRD_SAMPLE_RATE: // 48 kHz to 48 kHz
// no resampling needed
pFiltTaps = NULL;
iNumTaps = 0;
iI = 1;
break;
default:
// resample ratio not defined, throw error
throw 0;
break;
}
}
else // upsampling case (assumption: iTo == SND_CRD_SAMPLE_RATE)
{
switch ( iFrom )
{
case ( SND_CRD_SAMPLE_RATE / 2 ): // 24 kHz to 48 kHz
pFiltTaps = fResTaps2;
iNumTaps = DECIM_D_2 * NUM_TAPS_PER_PHASE2;
iI = INTERP_I_2;
break;
case ( SND_CRD_SAMPLE_RATE * 7 / 12 ): // 28 kHz to 48 kHz
pFiltTaps = fResTaps12_7;
iNumTaps = DECIM_D_12_7 * NUM_TAPS_PER_PHASE12_7;
iI = INTERP_I_12_7;
break;
case ( SND_CRD_SAMPLE_RATE * 2 / 3 ): // 32 kHz to 48 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = DECIM_D_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = INTERP_I_3_2;
break;
default:
// resample ratio not defined, throw error
throw 0;
break;
}
}
// allocate memory for internal buffer, clear sample history (for
// the stereo case we have to consider that two times the number of taps of
// additional memory is required)
vecdIntBuffMono.Init ( iMonoInputBlockSize + iNumTaps, 0.0 );
vecdIntBuffStereo.Init ( iStereoInputBlockSize + 2 * iNumTaps, 0.0 );
}