jamulus/src/util.h
2010-04-09 17:54:34 +00:00

690 lines
20 KiB
C++
Executable File

/******************************************************************************\
* Copyright (c) 2004-2010
*
* Author(s):
* Volker Fischer
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#if !defined ( UTIL_HOIH934256GEKJH98_3_43445KJIUHF1912__INCLUDED_ )
#define UTIL_HOIH934256GEKJH98_3_43445KJIUHF1912__INCLUDED_
#include <qhostaddress.h>
#include <qmenu.h>
#include <qwhatsthis.h>
#include <qtextbrowser.h>
#include <qlabel.h>
#include <qdatetime.h>
#include <qfile.h>
#include <vector>
#include "global.h"
using namespace std; // because of the library: "vector"
#ifdef _WIN32
# include "../windows/moc/aboutdlgbase.h"
# include <windows.h>
# include <mmsystem.h>
#else
# ifdef _IS_QMAKE_CONFIG
# include "ui_aboutdlgbase.h"
# else
# include "moc/aboutdlgbase.h"
# endif
#endif
/* Definitions ****************************************************************/
#define METER_FLY_BACK 2
/* Global functions ***********************************************************/
// converting double to short
inline short Double2Short ( const double dInput )
{
// lower bound
if ( dInput < _MINSHORT )
{
return _MINSHORT;
}
// upper bound
if ( dInput > _MAXSHORT )
{
return _MAXSHORT;
}
return (short) dInput;
}
// debug error handling
void DebugError ( const QString& pchErDescr, const QString& pchPar1Descr,
const double dPar1, const QString& pchPar2Descr,
const double dPar2 );
/******************************************************************************\
* CVector base class *
\******************************************************************************/
template<class TData> class CVector : public std::vector<TData>
{
public:
CVector() : iVectorSize ( 0 ) { pData = this->begin(); }
CVector ( const int iNeSi ) { Init(iNeSi); }
CVector ( const int iNeSi, const TData tInVa ) { Init ( iNeSi, tInVa ); }
virtual ~CVector() {}
/* Copy constructor: The order of the initialization list must not be
changed. First, the base class must be initialized, then the pData
pointer must be set to the new data source. The bit access is, by
default, reset */
CVector ( const CVector<TData>& vecI ) :
std::vector<TData> ( static_cast<const std::vector<TData>&> ( vecI ) ),
iVectorSize ( vecI.Size() ) { pData = this->begin(); }
void Init ( const int iNewSize );
// use this init to give all elements a defined value
void Init ( const int iNewSize, const TData tIniVal );
void Reset ( const TData tResetVal );
void Enlarge ( const int iAddedSize );
void Add ( const TData& tI ) { Enlarge ( 1 ); pData[iVectorSize - 1] = tI; }
inline int Size() const { return iVectorSize; }
/* This operator allows for a l-value assignment of this object:
CVector[x] = y is possible */
inline TData& operator[] ( const int iPos ) {
#ifdef _DEBUG_
if ( ( iPos < 0 ) || ( iPos > iVectorSize - 1 ) )
{
DebugError ( "Writing vector out of bounds", "Vector size",
iVectorSize, "New parameter", iPos );
}
#endif
return pData[iPos]; }
inline TData operator[] ( const int iPos ) const {
#ifdef _DEBUG_
if ( ( iPos < 0 ) || ( iPos > iVectorSize - 1 ) )
{
DebugError ( "Reading vector out of bounds", "Vector size",
iVectorSize, "New parameter", iPos );
}
#endif
return pData[iPos]; }
inline CVector<TData>& operator= ( const CVector<TData>& vecI ) {
#ifdef _DEBUG_
/* Vectors which shall be copied MUST have same size! (If this is
satisfied, the parameter "iVectorSize" must not be adjusted as
a side effect) */
if ( vecI.Size() != iVectorSize )
{
DebugError ( "Vector operator=() different size", "Vector size",
iVectorSize, "New parameter", vecI.Size() );
}
#endif
vector<TData>::operator= ( vecI );
/* Reset my data pointer in case, the operator=() of the base class
did change the actual memory */
pData = this->begin();
return *this;
}
protected:
typename std::vector<TData>::iterator pData;
int iVectorSize;
};
/* Implementation *************************************************************/
template<class TData> void CVector<TData>::Init ( const int iNewSize )
{
iVectorSize = iNewSize;
/* Clear old buffer and reserve memory for new buffer, get iterator
for pointer operations */
this->clear();
this->resize ( iNewSize );
pData = this->begin();
}
template<class TData> void CVector<TData>::Init ( const int iNewSize,
const TData tIniVal )
{
// call actual init routine
Init ( iNewSize );
// set values
Reset ( tIniVal );
}
template<class TData> void CVector<TData>::Enlarge ( const int iAddedSize )
{
iVectorSize += iAddedSize;
this->resize ( iVectorSize );
/* We have to reset the pointer since it could be that the vector size was
zero before enlarging the vector */
pData = this->begin();
}
template<class TData> void CVector<TData>::Reset ( const TData tResetVal )
{
// set all values to reset value
for ( int i = 0; i < iVectorSize; i++ )
{
pData[i] = tResetVal;
}
}
/******************************************************************************\
* CFIFO class (first in, first out) *
\******************************************************************************/
template<class TData> class CFIFO : public CVector<TData>
{
public:
CFIFO() : CVector<TData>(), iCurIdx ( 0 ) {}
CFIFO ( const int iNeSi ) : CVector<TData>(iNeSi), iCurIdx ( 0 ) {}
CFIFO ( const int iNeSi, const TData tInVa ) :
CVector<TData> ( iNeSi, tInVa ), iCurIdx ( 0 ) {}
void Add ( const TData tNewD );
inline TData Get() { return this->pData[iCurIdx]; }
virtual void Init ( const int iNewSize );
virtual void Init ( const int iNewSize, const TData tIniVal );
protected:
int iCurIdx;
};
template<class TData> void CFIFO<TData>::Init ( const int iNewSize )
{
iCurIdx = 0;
CVector<TData>::Init ( iNewSize );
}
template<class TData> void CFIFO<TData>::Init ( const int iNewSize,
const TData tIniVal )
{
iCurIdx = 0;
CVector<TData>::Init ( iNewSize, tIniVal );
}
template<class TData> void CFIFO<TData>::Add ( const TData tNewD )
{
this->pData[iCurIdx] = tNewD;
// increment index
iCurIdx++;
if ( iCurIdx >= this->iVectorSize )
{
iCurIdx = 0;
}
}
/******************************************************************************\
* CMovingAv class (moving average) *
\******************************************************************************/
template<class TData> class CMovingAv : public CVector<TData>
{
public:
CMovingAv() : CVector<TData>(), iCurIdx ( 0 ), iNorm ( 0 ),
tCurAvResult ( TData ( 0 ) ) {}
CMovingAv ( const int iNeSi ) : CVector<TData> ( iNeSi ), iCurIdx ( 0 ),
iNorm ( 0 ), tCurAvResult ( TData ( 0 ) ) {}
CMovingAv ( const int iNeSi, const TData tInVa ) :
CVector<TData> ( iNeSi, tInVa ), iCurIdx ( 0 ), iNorm ( 0 ),
tCurAvResult ( TData ( 0 ) ) {}
void Add ( const TData tNewD );
inline TData GetAverage()
{
if ( this->iNorm == 0 )
{
return TData ( 0 );
}
else
{
return tCurAvResult / this->iNorm;
}
}
virtual void Init ( const int iNewSize );
void InitVec ( const int iNewSize, const int iNewVecSize );
void Reset();
bool IsInitialized() { return ( this->iNorm == this->iVectorSize ); }
protected:
int iCurIdx;
int iNorm;
TData tCurAvResult;
};
template<class TData> void CMovingAv<TData>::Init ( const int iNewSize )
{
iNorm = 0;
iCurIdx = 0;
tCurAvResult = TData ( 0 ); // only for scalars!
CVector<TData>::Init ( iNewSize );
}
template<class TData> void CMovingAv<TData>::Reset()
{
iNorm = 0;
iCurIdx = 0;
tCurAvResult = TData ( 0 ); // only for scalars!
CVector<TData>::Reset ( TData ( 0 ) );
}
template<class TData> void CMovingAv<TData>::Add ( const TData tNewD )
{
/*
Optimized calculation of the moving average. We only add a new value and
subtract the old value from the result. We only need one addition and a
history buffer
*/
// subtract oldest value
tCurAvResult -= this->pData[iCurIdx];
// add new value and write in memory
tCurAvResult += tNewD;
this->pData[iCurIdx] = tNewD;
// increase position pointer and test if wrap
iCurIdx++;
if ( iCurIdx >= this->iVectorSize )
{
iCurIdx = 0;
}
// take care of norm
if ( this->iNorm < this->iVectorSize )
{
this->iNorm++;
}
}
/******************************************************************************\
* GUI utilities *
\******************************************************************************/
// About dialog ----------------------------------------------------------------
class CAboutDlg : public QDialog, private Ui_CAboutDlgBase
{
Q_OBJECT
public:
CAboutDlg ( QWidget* parent = 0 );
static QString GetVersionAndNameStr ( const bool bWithHtml = true );
};
// Help menu -------------------------------------------------------------------
class CLlconHelpMenu : public QMenu
{
Q_OBJECT
public:
CLlconHelpMenu ( QWidget* parent = 0 );
protected:
CAboutDlg AboutDlg;
public slots:
void OnHelpWhatsThis() { QWhatsThis::enterWhatsThisMode(); }
void OnHelpAbout() { AboutDlg.exec(); }
};
/* Other Classes **************************************************************/
// Stereo Signal Level Meter ---------------------------------------------------
class CStereoSignalLevelMeter
{
public:
CStereoSignalLevelMeter() { Reset(); }
virtual ~CStereoSignalLevelMeter() {}
void Update ( CVector<short>& vecsAudio );
double MicLevelLeft() { return CalcLogResult ( dCurLevelL ); }
double MicLevelRight() { return CalcLogResult ( dCurLevelR ); }
void Reset() { dCurLevelL = 0.0; dCurLevelR = 0.0; }
protected:
double CalcLogResult ( const double& dLinearLevel );
double UpdateCurLevel ( double dCurLevel, const short& sMax );
double dCurLevelL;
double dCurLevelR;
};
class CHostAddress
{
public:
CHostAddress() :
InetAddr ( (quint32) 0 ),
iPort ( 0 ) {}
CHostAddress ( const QHostAddress NInetAddr,
const quint16 iNPort ) :
InetAddr ( NInetAddr ),
iPort ( iNPort ) {}
CHostAddress ( const CHostAddress& NHAddr ) :
InetAddr ( NHAddr.InetAddr ),
iPort ( NHAddr.iPort ) {}
// copy and compare operators
CHostAddress& operator= ( const CHostAddress& NHAddr )
{ InetAddr = NHAddr.InetAddr; iPort = NHAddr.iPort; return *this; }
bool operator== ( const CHostAddress& CompAddr ) // compare operator
{ return ( ( CompAddr.InetAddr == InetAddr ) && ( CompAddr.iPort == iPort ) ); }
QString GetIpAddressStringNoLastByte() const
{
// remove the last byte of the IP address
return InetAddr.toString().section ( ".", 0, 2 ) + ".x";
}
QHostAddress InetAddr;
quint16 iPort;
};
class CChannelShortInfo
{
public:
CChannelShortInfo() :
iChanID ( 0 ),
iIpAddr ( 0 ),
strName ( "" ) {}
CChannelShortInfo ( const int iNID,
const quint32 nIP,
const QString nN ) :
iChanID ( iNID ),
iIpAddr ( nIP ),
strName ( nN ) {}
int iChanID;
quint32 iIpAddr;
QString strName;
};
enum EAudComprType
{
CT_NONE = 0,
CT_CELT = 1
};
enum EGetDataStat
{
GS_BUFFER_OK,
GS_BUFFER_UNDERRUN,
GS_CHAN_NOW_DISCONNECTED,
GS_CHAN_NOT_CONNECTED
};
enum EGUIDesign
{
GD_STANDARD = 0,
GD_ORIGINAL = 1
};
class CNetworkTransportProps
{
public:
CNetworkTransportProps() :
iBaseNetworkPacketSize ( 0 ),
iBlockSizeFact ( 0 ),
iNumAudioChannels ( 0 ),
iSampleRate ( 0 ),
eAudioCodingType ( CT_NONE ),
iAudioCodingArg ( 0 ) {}
CNetworkTransportProps ( const uint32_t iNBNPS,
const uint16_t iNBSF,
const uint32_t iNNACH,
const uint32_t iNSR,
const EAudComprType eNACT,
const uint32_t iNVers,
const int32_t iNACA ) :
iBaseNetworkPacketSize ( iNBNPS ),
iBlockSizeFact ( iNBSF ),
iNumAudioChannels ( iNNACH ),
iSampleRate ( iNSR ),
eAudioCodingType ( eNACT ),
iVersion ( iNVers ),
iAudioCodingArg ( iNACA ) {}
uint32_t iBaseNetworkPacketSize;
uint16_t iBlockSizeFact;
uint32_t iNumAudioChannels;
uint32_t iSampleRate;
EAudComprType eAudioCodingType;
uint32_t iVersion;
int32_t iAudioCodingArg;
};
// Audio Reverbration ----------------------------------------------------------
class CAudioReverb
{
public:
CAudioReverb() {}
void Init ( const int iSampleRate, const double rT60 = (double) 5.0 );
void Clear();
double ProcessSample ( const double input );
protected:
void setT60 ( const double rT60, const int iSampleRate );
bool isPrime ( const int number );
CFIFO<int> allpassDelays_[3];
CFIFO<int> combDelays_[4];
double allpassCoefficient_;
double combCoefficient_[4];
};
// CRC -------------------------------------------------------------------------
class CCRC
{
public:
CCRC() : iPoly ( ( 1 << 5 ) | ( 1 << 12 ) ), iBitOutMask ( 1 << 16 )
{ Reset(); }
virtual ~CCRC() {}
void Reset();
void AddByte ( const uint8_t byNewInput );
bool CheckCRC ( const uint32_t iCRC ) { return iCRC == GetCRC(); }
uint32_t GetCRC();
protected:
uint32_t iPoly;
uint32_t iBitOutMask;
uint32_t iStateShiftReg;
};
// Mathematics utilities -------------------------------------------------------
class LlconMath
{
public:
static int round ( double x )
{
return (int) ( ( x - floor ( x ) ) >= 0.5 ) ? ceil(x) : floor(x);
}
};
// Precise time ----------------------------------------------------------------
// needed for ping measurement
class CPreciseTime
{
public:
#ifdef _WIN32
// for the Windows version we have to define a minimum timer precision
// -> set it to 1 ms
CPreciseTime() { timeBeginPeriod ( 1 ); }
virtual ~CPreciseTime() { timeEndPeriod ( 1 ); }
#endif
// precise time (on Windows the QTime is not precise enough)
int elapsed()
{
#ifdef _WIN32
return timeGetTime();
#else
return QTime().elapsed();
#endif
}
};
/******************************************************************************\
* Statistics *
\******************************************************************************/
// Cycle time variance measurement ---------------------------------------------
// use for, e.g., measuring the variance of a timer
class CCycleTimeVariance
{
public:
CCycleTimeVariance() : iBlockLengthAtSystemSampleRate ( 0 ),
dIntervalTime ( 0.0 ), iNewValueBoundFactor ( 0 ) {}
void Init ( const int iNewBlockLengthAtSystemSampleRate,
const int iNewSystemSampleRate,
const int iHistoryLengthTime,
const int iNewNewValueBoundFactor = 4 )
{
// store block size and new value bound factor
iBlockLengthAtSystemSampleRate = iNewBlockLengthAtSystemSampleRate;
iNewValueBoundFactor = iNewNewValueBoundFactor;
// calculate interval time
dIntervalTime = static_cast<double> (
iBlockLengthAtSystemSampleRate ) * 1000 / iNewSystemSampleRate;
// calculate actual moving average length and initialize buffer
RespTimeMoAvBuf.Init ( iHistoryLengthTime *
iNewSystemSampleRate / iNewBlockLengthAtSystemSampleRate );
}
int GetBlockLength() { return iBlockLengthAtSystemSampleRate; }
void Reset()
{
TimeLastBlock = PreciseTime.elapsed();
RespTimeMoAvBuf.Reset();
}
double Update()
{
// add time difference
const int CurTime = PreciseTime.elapsed();
// we want to calculate the standard deviation (we assume that the mean
// is correct at the block period time)
const double dCurAddVal =
static_cast<double> ( CurTime - TimeLastBlock ) - dIntervalTime;
if ( iNewValueBoundFactor > 0 )
{
// check if new value is in range
if ( fabs ( dCurAddVal ) < ( iNewValueBoundFactor * dIntervalTime ) )
{
// add squared value
RespTimeMoAvBuf.Add ( dCurAddVal * dCurAddVal );
}
}
else
{
// new value bound is not used, add new value (add squared value)
RespTimeMoAvBuf.Add ( dCurAddVal * dCurAddVal );
}
// store old time value
TimeLastBlock = CurTime;
return dCurAddVal;
}
// return the standard deviation, for that we need to calculate
// the sqaure root
double GetStdDev() { return sqrt ( RespTimeMoAvBuf.GetAverage() ); }
bool IsInitialized() { return RespTimeMoAvBuf.IsInitialized(); }
protected:
CPreciseTime PreciseTime;
CMovingAv<double> RespTimeMoAvBuf;
int TimeLastBlock;
int iBlockLengthAtSystemSampleRate;
double dIntervalTime;
int iNewValueBoundFactor;
};
// Error rate measurement ------------------------------------------------------
class CErrorRate
{
public:
CErrorRate() {}
void Init ( const int iHistoryLength )
{
// initialize buffer
ErrorsMovAvBuf.Init ( iHistoryLength );
}
void Reset()
{
ErrorsMovAvBuf.Reset();
}
void Update ( const bool bState )
{
// add errors as values 0 and 1 to get correct error rate average
if ( bState )
{
ErrorsMovAvBuf.Add ( 1.0 );
}
else
{
ErrorsMovAvBuf.Add ( 0.0 );
}
}
// return the standard deviation, for that we need to calculate
// the sqaure root
double GetAverage() { return ErrorsMovAvBuf.GetAverage(); }
protected:
CMovingAv<double> ErrorsMovAvBuf;
};
#endif /* !defined ( UTIL_HOIH934256GEKJH98_3_43445KJIUHF1912__INCLUDED_ ) */