584 lines
18 KiB
C++
Executable file
584 lines
18 KiB
C++
Executable file
/******************************************************************************\
|
|
* Copyright (c) 2004-2020
|
|
*
|
|
* Author(s):
|
|
* Volker Fischer
|
|
*
|
|
******************************************************************************
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it under
|
|
* the terms of the GNU General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
* details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
\******************************************************************************/
|
|
|
|
#pragma once
|
|
|
|
#include "util.h"
|
|
#include "global.h"
|
|
|
|
|
|
/* Definitions ****************************************************************/
|
|
// number of simulation network jitter buffers for evaluating the statistic
|
|
// NOTE If you want to change this number, the code has to modified, too!
|
|
#define NUM_STAT_SIMULATION_BUFFERS 10
|
|
|
|
// hysteresis for buffer size decision to avoid fast changes if close to the bound
|
|
#define FILTER_DECISION_HYSTERESIS 0.1
|
|
|
|
// definition of the upper error bound of the jitter buffers
|
|
#define ERROR_RATE_BOUND_DOUBLE_FRAME_SIZE 0.001
|
|
#define ERROR_RATE_BOUND ( ERROR_RATE_BOUND_DOUBLE_FRAME_SIZE / 2 )
|
|
|
|
// definition of the upper jitter buffer error bound, if that one is reached we
|
|
// have to speed up the filtering to quickly get out of a incorrect buffer
|
|
// size state
|
|
#define UP_MAX_ERROR_BOUND_DOUBLE_FRAME_SIZE 0.01
|
|
#define UP_MAX_ERROR_BOUND ( UP_MAX_ERROR_BOUND_DOUBLE_FRAME_SIZE / 2 )
|
|
|
|
// each regular buffer access lead to a count for put and get, assuming 2.66 ms
|
|
// blocks we have 15 s / 2.66 ms * 2 = approx. 11000
|
|
#define MAX_STATISTIC_COUNT_DOUBLE_FRAME_SIZE 11000
|
|
|
|
// each regular buffer access lead to a count for put and get, assuming 1.33 ms
|
|
// blocks we have 15 s / 1.33 ms * 2 = approx. 22500
|
|
#define MAX_STATISTIC_COUNT 22500
|
|
|
|
// Note that the following definitions of the weigh constants assume a block
|
|
// size of 128 samples at a sampling rate of 48 kHz.
|
|
#define IIR_WEIGTH_UP_NORMAL_DOUBLE_FRAME_SIZE 0.999995
|
|
#define IIR_WEIGTH_DOWN_NORMAL_DOUBLE_FRAME_SIZE 0.9999
|
|
#define IIR_WEIGTH_UP_FAST_DOUBLE_FRAME_SIZE 0.9995
|
|
#define IIR_WEIGTH_DOWN_FAST_DOUBLE_FRAME_SIZE 0.999
|
|
|
|
// convert numbers from 128 samples case using http://www.tsdconseil.fr/tutos/tuto-iir1-en.pdf
|
|
// and https://octave-online.net:
|
|
// gamma = exp(-Ts/tau), after some calculations we get: x=0.999995;exp(64/128*log(x))
|
|
#define IIR_WEIGTH_UP_NORMAL 0.9999975
|
|
#define IIR_WEIGTH_DOWN_NORMAL 0.99994999875
|
|
#define IIR_WEIGTH_UP_FAST 0.9997499687422
|
|
#define IIR_WEIGTH_DOWN_FAST 0.999499875
|
|
|
|
|
|
/* Classes ********************************************************************/
|
|
// Buffer base class -----------------------------------------------------------
|
|
template<class TData> class CBufferBase
|
|
{
|
|
public:
|
|
CBufferBase ( const bool bNIsSim = false ) :
|
|
bIsSimulation ( bNIsSim ), bIsInitialized ( false ) {}
|
|
|
|
void SetIsSimulation ( const bool bNIsSim ) { bIsSimulation = bNIsSim; }
|
|
|
|
void Init ( const int iNewMemSize,
|
|
const bool bPreserve = false )
|
|
{
|
|
// in simulation mode the size is not changed during operation -> we do
|
|
// not have to implement special code for this case
|
|
// only enter the "preserve" branch, if object was already initialized
|
|
if ( bPreserve && ( !bIsSimulation ) && bIsInitialized )
|
|
{
|
|
// copy old data in new vector using get pointer as zero per
|
|
// definition
|
|
int iCurPos;
|
|
|
|
// copy current data in temporary vector
|
|
CVector<TData> vecTempMemory ( vecMemory );
|
|
|
|
// resize actual buffer memory
|
|
vecMemory.Init ( iNewMemSize );
|
|
|
|
// get maximum number of data to be copied
|
|
int iCopyLen = GetAvailData();
|
|
|
|
if ( iCopyLen > iNewMemSize )
|
|
{
|
|
iCopyLen = iNewMemSize;
|
|
}
|
|
|
|
// set correct buffer state
|
|
if ( iCopyLen == iNewMemSize )
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_FULL;
|
|
}
|
|
else
|
|
{
|
|
if ( iCopyLen == 0 )
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_EMPTY;
|
|
}
|
|
else
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_OK;
|
|
}
|
|
}
|
|
|
|
if ( iGetPos < iPutPos )
|
|
{
|
|
// "get" position is before "put" position -> no wrap around
|
|
for ( iCurPos = 0; iCurPos < iCopyLen; iCurPos++ )
|
|
{
|
|
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// "put" position is before "get" position -> wrap around
|
|
bool bEnoughSpaceForSecondPart = true;
|
|
int iFirstPartLen = iMemSize - iGetPos;
|
|
|
|
// check that first copy length is not larger then new memory
|
|
if ( iFirstPartLen >= iCopyLen )
|
|
{
|
|
iFirstPartLen = iCopyLen;
|
|
bEnoughSpaceForSecondPart = false;
|
|
}
|
|
|
|
for ( iCurPos = 0; iCurPos < iFirstPartLen; iCurPos++ )
|
|
{
|
|
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
|
|
}
|
|
|
|
if ( bEnoughSpaceForSecondPart )
|
|
{
|
|
// calculate remaining copy length
|
|
const int iRemainingCopyLen = iCopyLen - iFirstPartLen;
|
|
|
|
// perform copying of second part
|
|
for ( iCurPos = 0; iCurPos < iRemainingCopyLen; iCurPos++ )
|
|
{
|
|
vecMemory[iCurPos + iFirstPartLen] = vecTempMemory[iCurPos];
|
|
}
|
|
}
|
|
}
|
|
|
|
// update put pointer
|
|
if ( eBufState == CBufferBase<TData>::BS_FULL )
|
|
{
|
|
iPutPos = 0;
|
|
}
|
|
else
|
|
{
|
|
iPutPos = iCopyLen;
|
|
}
|
|
|
|
// update get position -> zero per definition
|
|
iGetPos = 0;
|
|
}
|
|
else
|
|
{
|
|
// allocate memory for actual data buffer
|
|
if ( !bIsSimulation )
|
|
{
|
|
vecMemory.Init ( iNewMemSize );
|
|
}
|
|
|
|
// init buffer pointers and buffer state (empty buffer)
|
|
iGetPos = 0;
|
|
iPutPos = 0;
|
|
eBufState = CBufferBase<TData>::BS_EMPTY;
|
|
}
|
|
|
|
// store total memory size value
|
|
iMemSize = iNewMemSize;
|
|
|
|
// set initialized flag
|
|
bIsInitialized = true;
|
|
}
|
|
|
|
virtual bool Put ( const CVector<TData>& vecData,
|
|
const int iInSize )
|
|
{
|
|
if ( bIsSimulation )
|
|
{
|
|
// in this simulation only the buffer pointers and the buffer state
|
|
// is updated, no actual data is transferred
|
|
iPutPos += iInSize;
|
|
|
|
if ( iPutPos >= iMemSize )
|
|
{
|
|
iPutPos -= iMemSize;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// copy new data in internal buffer
|
|
int iCurPos = 0;
|
|
|
|
if ( iPutPos + iInSize > iMemSize )
|
|
{
|
|
// remaining space size for second block
|
|
const int iRemSpace = iPutPos + iInSize - iMemSize;
|
|
|
|
// data must be written in two steps because of wrap around
|
|
while ( iPutPos < iMemSize )
|
|
{
|
|
vecMemory[iPutPos++] = vecData[iCurPos++];
|
|
}
|
|
|
|
for ( iPutPos = 0; iPutPos < iRemSpace; iPutPos++ )
|
|
{
|
|
vecMemory[iPutPos] = vecData[iCurPos++];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// data can be written in one step
|
|
std::copy ( vecData.begin(),
|
|
vecData.begin() + iInSize,
|
|
vecMemory.begin() + iPutPos );
|
|
|
|
// set the put position one block further (no wrap around needs
|
|
// to be considered here)
|
|
iPutPos += iInSize;
|
|
}
|
|
}
|
|
|
|
// take care about wrap around of put pointer
|
|
if ( iPutPos == iMemSize )
|
|
{
|
|
iPutPos = 0;
|
|
}
|
|
|
|
// set buffer state flag
|
|
if ( iPutPos == iGetPos )
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_FULL;
|
|
}
|
|
else
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_OK;
|
|
}
|
|
|
|
return true; // no error check in base class, alyways return ok
|
|
}
|
|
|
|
virtual bool Get ( CVector<TData>& vecData,
|
|
const int iOutSize )
|
|
{
|
|
if ( bIsSimulation )
|
|
{
|
|
// in this simulation only the buffer pointers and the buffer state
|
|
// is updated, no actual data is transferred
|
|
iGetPos += iOutSize;
|
|
|
|
if ( iGetPos >= iMemSize )
|
|
{
|
|
iGetPos -= iMemSize;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// copy data from internal buffer in output buffer
|
|
int iCurPos = 0;
|
|
|
|
if ( iGetPos + iOutSize > iMemSize )
|
|
{
|
|
// remaining data size for second block
|
|
const int iRemData = iGetPos + iOutSize - iMemSize;
|
|
|
|
// data must be read in two steps because of wrap around
|
|
while ( iGetPos < iMemSize )
|
|
{
|
|
vecData[iCurPos++] = vecMemory[iGetPos++];
|
|
}
|
|
|
|
for ( iGetPos = 0; iGetPos < iRemData; iGetPos++ )
|
|
{
|
|
vecData[iCurPos++] = vecMemory[iGetPos];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// data can be read in one step
|
|
std::copy ( vecMemory.begin() + iGetPos,
|
|
vecMemory.begin() + iGetPos + iOutSize,
|
|
vecData.begin() );
|
|
|
|
// set the get position one block further (no wrap around needs
|
|
// to be considered here)
|
|
iGetPos += iOutSize;
|
|
}
|
|
}
|
|
|
|
// take care about wrap around of get pointer
|
|
if ( iGetPos == iMemSize )
|
|
{
|
|
iGetPos = 0;
|
|
}
|
|
|
|
// set buffer state flag
|
|
if ( iPutPos == iGetPos )
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_EMPTY;
|
|
}
|
|
else
|
|
{
|
|
eBufState = CBufferBase<TData>::BS_OK;
|
|
}
|
|
|
|
return true; // no error check in base class, alyways return ok
|
|
}
|
|
|
|
virtual int GetAvailSpace() const
|
|
{
|
|
// calculate available space in buffer
|
|
int iAvSpace = iGetPos - iPutPos;
|
|
|
|
// check for special case and wrap around
|
|
if ( iAvSpace < 0 )
|
|
{
|
|
iAvSpace += iMemSize; // wrap around
|
|
}
|
|
else
|
|
{
|
|
if ( ( iAvSpace == 0 ) && ( eBufState == BS_EMPTY ) )
|
|
{
|
|
iAvSpace = iMemSize;
|
|
}
|
|
}
|
|
|
|
return iAvSpace;
|
|
}
|
|
|
|
virtual int GetAvailData() const
|
|
{
|
|
// calculate available data in buffer
|
|
int iAvData = iPutPos - iGetPos;
|
|
|
|
// check for special case and wrap around
|
|
if ( iAvData < 0 )
|
|
{
|
|
iAvData += iMemSize; // wrap around
|
|
}
|
|
else
|
|
{
|
|
if ( ( iAvData == 0 ) && ( eBufState == BS_FULL ) )
|
|
{
|
|
iAvData = iMemSize;
|
|
}
|
|
}
|
|
|
|
return iAvData;
|
|
}
|
|
|
|
protected:
|
|
enum EBufState { BS_OK, BS_FULL, BS_EMPTY };
|
|
|
|
virtual void Clear()
|
|
{
|
|
// clear memory
|
|
if ( !bIsSimulation )
|
|
{
|
|
vecMemory.Reset ( 0 );
|
|
}
|
|
|
|
// init buffer pointers and buffer state (empty buffer)
|
|
iGetPos = 0;
|
|
iPutPos = 0;
|
|
eBufState = CBufferBase<TData>::BS_EMPTY;
|
|
}
|
|
|
|
CVector<TData> vecMemory;
|
|
int iMemSize;
|
|
int iGetPos;
|
|
int iPutPos;
|
|
EBufState eBufState;
|
|
bool bIsSimulation;
|
|
bool bIsInitialized;
|
|
};
|
|
|
|
|
|
// Network buffer (jitter buffer) ----------------------------------------------
|
|
class CNetBuf : public CBufferBase<uint8_t>
|
|
{
|
|
public:
|
|
CNetBuf ( const bool bNewIsSim = false ) :
|
|
CBufferBase<uint8_t> ( bNewIsSim ) {}
|
|
|
|
void Init ( const int iNewBlockSize,
|
|
const int iNewNumBlocks,
|
|
const bool bPreserve = false );
|
|
|
|
int GetSize() { return iMemSize / iBlockSize; }
|
|
|
|
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
|
|
virtual bool Get ( CVector<uint8_t>& vecbyData, const int iOutSize );
|
|
|
|
protected:
|
|
int iBlockSize;
|
|
};
|
|
|
|
|
|
// Network buffer (jitter buffer) with statistic calculations ------------------
|
|
class CNetBufWithStats : public CNetBuf
|
|
{
|
|
public:
|
|
CNetBufWithStats();
|
|
|
|
void Init ( const int iNewBlockSize,
|
|
const int iNewNumBlocks,
|
|
const bool bPreserve = false );
|
|
|
|
void SetUseDoubleSystemFrameSize ( const bool bNDSFSize ) { bUseDoubleSystemFrameSize = bNDSFSize; }
|
|
|
|
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
|
|
virtual bool Get ( CVector<uint8_t>& vecbyData, const int iOutSize );
|
|
|
|
int GetAutoSetting() { return iCurAutoBufferSizeSetting; }
|
|
void GetErrorRates ( CVector<double>& vecErrRates,
|
|
double& dLimit,
|
|
double& dMaxUpLimit );
|
|
|
|
protected:
|
|
void UpdateAutoSetting();
|
|
void ResetInitCounter();
|
|
|
|
// statistic (do not use the vector class since the classes do not have
|
|
// appropriate copy constructor/operator)
|
|
CErrorRate ErrorRateStatistic[NUM_STAT_SIMULATION_BUFFERS];
|
|
CNetBuf SimulationBuffer[NUM_STAT_SIMULATION_BUFFERS];
|
|
int viBufSizesForSim[NUM_STAT_SIMULATION_BUFFERS];
|
|
|
|
double dCurIIRFilterResult;
|
|
int iCurDecidedResult;
|
|
int iInitCounter;
|
|
int iCurAutoBufferSizeSetting;
|
|
int iMaxStatisticCount;
|
|
|
|
bool bUseDoubleSystemFrameSize;
|
|
double dAutoFilt_WightUpNormal;
|
|
double dAutoFilt_WightDownNormal;
|
|
double dAutoFilt_WightUpFast;
|
|
double dAutoFilt_WightDownFast;
|
|
double dErrorRateBound;
|
|
double dUpMaxErrorBound;
|
|
};
|
|
|
|
|
|
// Conversion buffer (very simple buffer) --------------------------------------
|
|
// For this very simple buffer no wrap around mechanism is implemented. We
|
|
// assume here, that the applied buffers are an integer fraction of the total
|
|
// buffer size.
|
|
template<class TData> class CConvBuf
|
|
{
|
|
public:
|
|
CConvBuf() { Init ( 0 ); }
|
|
|
|
void Init ( const int iNewMemSize )
|
|
{
|
|
// allocate internal memory and reset read/write positions
|
|
vecMemory.Init ( iNewMemSize );
|
|
iMemSize = iNewMemSize;
|
|
iBufferSize = iNewMemSize;
|
|
Reset();
|
|
}
|
|
|
|
void Reset()
|
|
{
|
|
iPutPos = 0;
|
|
iGetPos = 0;
|
|
}
|
|
|
|
void SetBufferSize ( const int iNBSize )
|
|
{
|
|
// if buffer size has changed, apply new value and reset the buffer pointers
|
|
if ( ( iNBSize != iBufferSize ) && ( iNBSize <= iMemSize ) )
|
|
{
|
|
iBufferSize = iNBSize;
|
|
Reset();
|
|
}
|
|
}
|
|
|
|
void PutAll ( const CVector<TData>& vecsData )
|
|
{
|
|
iGetPos = 0;
|
|
|
|
std::copy ( vecsData.begin(),
|
|
vecsData.begin() + iBufferSize, // note that input vector might be larger then memory size
|
|
vecMemory.begin() );
|
|
}
|
|
|
|
bool Put ( const CVector<TData>& vecsData,
|
|
const int iVecSize )
|
|
{
|
|
// calculate the input size and the end position after copying
|
|
const int iEnd = iPutPos + iVecSize;
|
|
|
|
// first check for buffer overrun
|
|
if ( iEnd <= iBufferSize )
|
|
{
|
|
// copy new data in internal buffer
|
|
std::copy ( vecsData.begin(),
|
|
vecsData.begin() + iVecSize,
|
|
vecMemory.begin() + iPutPos );
|
|
|
|
// set buffer pointer one block further
|
|
iPutPos = iEnd;
|
|
|
|
// return "buffer is ready for readout" flag
|
|
return ( iEnd == iBufferSize );
|
|
}
|
|
|
|
// buffer overrun or not initialized, return "not ready"
|
|
return false;
|
|
}
|
|
|
|
const CVector<TData>& GetAll()
|
|
{
|
|
iPutPos = 0;
|
|
return vecMemory;
|
|
}
|
|
|
|
void GetAll ( CVector<TData>& vecsData,
|
|
const int iVecSize )
|
|
{
|
|
iPutPos = 0;
|
|
|
|
// copy data from internal buffer in given buffer
|
|
std::copy ( vecMemory.begin(),
|
|
vecMemory.begin() + iVecSize,
|
|
vecsData.begin() );
|
|
}
|
|
|
|
bool Get ( CVector<TData>& vecsData,
|
|
const int iVecSize )
|
|
{
|
|
// calculate the input size and the end position after copying
|
|
const int iEnd = iGetPos + iVecSize;
|
|
|
|
// first check for buffer underrun
|
|
if ( iEnd <= iBufferSize )
|
|
{
|
|
// copy new data from internal buffer
|
|
std::copy ( vecMemory.begin() + iGetPos,
|
|
vecMemory.begin() + iGetPos + iVecSize,
|
|
vecsData.begin() );
|
|
|
|
// set buffer pointer one block further
|
|
iGetPos = iEnd;
|
|
|
|
// return the memory could be read
|
|
return true;
|
|
}
|
|
|
|
// return that no memory could be read
|
|
return false;
|
|
}
|
|
|
|
protected:
|
|
CVector<TData> vecMemory;
|
|
int iMemSize;
|
|
int iBufferSize;
|
|
int iPutPos, iGetPos;
|
|
};
|