1518 lines
42 KiB
C
Executable file
1518 lines
42 KiB
C
Executable file
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Copyright (c) 2008-2009 Gregory Maxwell
|
|
Written by Jean-Marc Valin and Gregory Maxwell */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "bands.h"
|
|
#include "modes.h"
|
|
#include "vq.h"
|
|
#include "cwrs.h"
|
|
#include "stack_alloc.h"
|
|
#include "os_support.h"
|
|
#include "mathops.h"
|
|
#include "rate.h"
|
|
#include "quant_bands.h"
|
|
#include "pitch.h"
|
|
|
|
int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
|
|
{
|
|
int i;
|
|
for (i=0;i<N;i++)
|
|
{
|
|
if (val < thresholds[i])
|
|
break;
|
|
}
|
|
if (i>prev && val < thresholds[prev]+hysteresis[prev])
|
|
i=prev;
|
|
if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
|
|
i=prev;
|
|
return i;
|
|
}
|
|
|
|
opus_uint32 celt_lcg_rand(opus_uint32 seed)
|
|
{
|
|
return 1664525 * seed + 1013904223;
|
|
}
|
|
|
|
/* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
|
|
with this approximation is important because it has an impact on the bit allocation */
|
|
static opus_int16 bitexact_cos(opus_int16 x)
|
|
{
|
|
opus_int32 tmp;
|
|
opus_int16 x2;
|
|
tmp = (4096+((opus_int32)(x)*(x)))>>13;
|
|
celt_assert(tmp<=32767);
|
|
x2 = tmp;
|
|
x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
|
celt_assert(x2<=32766);
|
|
return 1+x2;
|
|
}
|
|
|
|
static int bitexact_log2tan(int isin,int icos)
|
|
{
|
|
int lc;
|
|
int ls;
|
|
lc=EC_ILOG(icos);
|
|
ls=EC_ILOG(isin);
|
|
icos<<=15-lc;
|
|
isin<<=15-ls;
|
|
return (ls-lc)*(1<<11)
|
|
+FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)
|
|
-FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932);
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M)
|
|
{
|
|
int i, c, N;
|
|
const opus_int16 *eBands = m->eBands;
|
|
N = M*m->shortMdctSize;
|
|
c=0; do {
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
opus_val32 maxval=0;
|
|
opus_val32 sum = 0;
|
|
|
|
j=M*eBands[i]; do {
|
|
maxval = MAX32(maxval, X[j+c*N]);
|
|
maxval = MAX32(maxval, -X[j+c*N]);
|
|
} while (++j<M*eBands[i+1]);
|
|
|
|
if (maxval > 0)
|
|
{
|
|
int shift = celt_ilog2(maxval)-10;
|
|
j=M*eBands[i]; do {
|
|
sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),
|
|
EXTRACT16(VSHR32(X[j+c*N],shift)));
|
|
} while (++j<M*eBands[i+1]);
|
|
/* We're adding one here to ensure the normalized band isn't larger than unity norm */
|
|
bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
|
} else {
|
|
bandE[i+c*m->nbEBands] = EPSILON;
|
|
}
|
|
/*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
|
}
|
|
} while (++c<C);
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
|
{
|
|
int i, c, N;
|
|
const opus_int16 *eBands = m->eBands;
|
|
N = M*m->shortMdctSize;
|
|
c=0; do {
|
|
i=0; do {
|
|
opus_val16 g;
|
|
int j,shift;
|
|
opus_val16 E;
|
|
shift = celt_zlog2(bandE[i+c*m->nbEBands])-13;
|
|
E = VSHR32(bandE[i+c*m->nbEBands], shift);
|
|
g = EXTRACT16(celt_rcp(SHL32(E,3)));
|
|
j=M*eBands[i]; do {
|
|
X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
|
|
} while (++j<M*eBands[i+1]);
|
|
} while (++i<end);
|
|
} while (++c<C);
|
|
}
|
|
|
|
#else /* FIXED_POINT */
|
|
/* Compute the amplitude (sqrt energy) in each of the bands */
|
|
void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int M)
|
|
{
|
|
int i, c, N;
|
|
const opus_int16 *eBands = m->eBands;
|
|
N = M*m->shortMdctSize;
|
|
c=0; do {
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
opus_val32 sum = 1e-27f;
|
|
for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
|
sum += X[j+c*N]*X[j+c*N];
|
|
bandE[i+c*m->nbEBands] = celt_sqrt(sum);
|
|
/*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
|
}
|
|
} while (++c<C);
|
|
/*printf ("\n");*/
|
|
}
|
|
|
|
/* Normalise each band such that the energy is one. */
|
|
void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
|
{
|
|
int i, c, N;
|
|
const opus_int16 *eBands = m->eBands;
|
|
N = M*m->shortMdctSize;
|
|
c=0; do {
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j;
|
|
opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]);
|
|
for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
|
X[j+c*N] = freq[j+c*N]*g;
|
|
}
|
|
} while (++c<C);
|
|
}
|
|
|
|
#endif /* FIXED_POINT */
|
|
|
|
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
|
void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
|
|
celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, int end, int C, int M)
|
|
{
|
|
int i, c, N;
|
|
const opus_int16 *eBands = m->eBands;
|
|
N = M*m->shortMdctSize;
|
|
celt_assert2(C<=2, "denormalise_bands() not implemented for >2 channels");
|
|
c=0; do {
|
|
celt_sig * OPUS_RESTRICT f;
|
|
const celt_norm * OPUS_RESTRICT x;
|
|
f = freq+c*N;
|
|
x = X+c*N+M*eBands[start];
|
|
for (i=0;i<M*eBands[start];i++)
|
|
*f++ = 0;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
int j, band_end;
|
|
opus_val16 g;
|
|
opus_val16 lg;
|
|
#ifdef FIXED_POINT
|
|
int shift;
|
|
#endif
|
|
j=M*eBands[i];
|
|
band_end = M*eBands[i+1];
|
|
lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6));
|
|
#ifndef FIXED_POINT
|
|
g = celt_exp2(lg);
|
|
#else
|
|
/* Handle the integer part of the log energy */
|
|
shift = 16-(lg>>DB_SHIFT);
|
|
if (shift>31)
|
|
{
|
|
shift=0;
|
|
g=0;
|
|
} else {
|
|
/* Handle the fractional part. */
|
|
g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
|
|
}
|
|
/* Handle extreme gains with negative shift. */
|
|
if (shift<0)
|
|
{
|
|
/* For shift < -2 we'd be likely to overflow, so we're capping
|
|
the gain here. This shouldn't happen unless the bitstream is
|
|
already corrupted. */
|
|
if (shift < -2)
|
|
{
|
|
g = 32767;
|
|
shift = -2;
|
|
}
|
|
do {
|
|
*f++ = SHL32(MULT16_16(*x++, g), -shift);
|
|
} while (++j<band_end);
|
|
} else
|
|
#endif
|
|
/* Be careful of the fixed-point "else" just above when changing this code */
|
|
do {
|
|
*f++ = SHR32(MULT16_16(*x++, g), shift);
|
|
} while (++j<band_end);
|
|
}
|
|
celt_assert(start <= end);
|
|
for (i=M*eBands[end];i<N;i++)
|
|
*f++ = 0;
|
|
} while (++c<C);
|
|
}
|
|
|
|
/* This prevents energy collapse for transients with multiple short MDCTs */
|
|
void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size,
|
|
int start, int end, opus_val16 *logE, opus_val16 *prev1logE,
|
|
opus_val16 *prev2logE, int *pulses, opus_uint32 seed)
|
|
{
|
|
int c, i, j, k;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
int N0;
|
|
opus_val16 thresh, sqrt_1;
|
|
int depth;
|
|
#ifdef FIXED_POINT
|
|
int shift;
|
|
opus_val32 thresh32;
|
|
#endif
|
|
|
|
N0 = m->eBands[i+1]-m->eBands[i];
|
|
/* depth in 1/8 bits */
|
|
depth = (1+pulses[i])/((m->eBands[i+1]-m->eBands[i])<<LM);
|
|
|
|
#ifdef FIXED_POINT
|
|
thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1);
|
|
thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32));
|
|
{
|
|
opus_val32 t;
|
|
t = N0<<LM;
|
|
shift = celt_ilog2(t)>>1;
|
|
t = SHL32(t, (7-shift)<<1);
|
|
sqrt_1 = celt_rsqrt_norm(t);
|
|
}
|
|
#else
|
|
thresh = .5f*celt_exp2(-.125f*depth);
|
|
sqrt_1 = celt_rsqrt(N0<<LM);
|
|
#endif
|
|
|
|
c=0; do
|
|
{
|
|
celt_norm *X;
|
|
opus_val16 prev1;
|
|
opus_val16 prev2;
|
|
opus_val32 Ediff;
|
|
opus_val16 r;
|
|
int renormalize=0;
|
|
prev1 = prev1logE[c*m->nbEBands+i];
|
|
prev2 = prev2logE[c*m->nbEBands+i];
|
|
if (C==1)
|
|
{
|
|
prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]);
|
|
prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]);
|
|
}
|
|
Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2));
|
|
Ediff = MAX32(0, Ediff);
|
|
|
|
#ifdef FIXED_POINT
|
|
if (Ediff < 16384)
|
|
{
|
|
opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1);
|
|
r = 2*MIN16(16383,r32);
|
|
} else {
|
|
r = 0;
|
|
}
|
|
if (LM==3)
|
|
r = MULT16_16_Q14(23170, MIN32(23169, r));
|
|
r = SHR16(MIN16(thresh, r),1);
|
|
r = SHR32(MULT16_16_Q15(sqrt_1, r),shift);
|
|
#else
|
|
/* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
|
short blocks don't have the same energy as long */
|
|
r = 2.f*celt_exp2(-Ediff);
|
|
if (LM==3)
|
|
r *= 1.41421356f;
|
|
r = MIN16(thresh, r);
|
|
r = r*sqrt_1;
|
|
#endif
|
|
X = X_+c*size+(m->eBands[i]<<LM);
|
|
for (k=0;k<1<<LM;k++)
|
|
{
|
|
/* Detect collapse */
|
|
if (!(collapse_masks[i*C+c]&1<<k))
|
|
{
|
|
/* Fill with noise */
|
|
for (j=0;j<N0;j++)
|
|
{
|
|
seed = celt_lcg_rand(seed);
|
|
X[(j<<LM)+k] = (seed&0x8000 ? r : -r);
|
|
}
|
|
renormalize = 1;
|
|
}
|
|
}
|
|
/* We just added some energy, so we need to renormalise */
|
|
if (renormalize)
|
|
renormalise_vector(X, N0<<LM, Q15ONE);
|
|
} while (++c<C);
|
|
}
|
|
}
|
|
|
|
static void intensity_stereo(const CELTMode *m, celt_norm *X, celt_norm *Y, const celt_ener *bandE, int bandID, int N)
|
|
{
|
|
int i = bandID;
|
|
int j;
|
|
opus_val16 a1, a2;
|
|
opus_val16 left, right;
|
|
opus_val16 norm;
|
|
#ifdef FIXED_POINT
|
|
int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13;
|
|
#endif
|
|
left = VSHR32(bandE[i],shift);
|
|
right = VSHR32(bandE[i+m->nbEBands],shift);
|
|
norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
|
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
|
a2 = DIV32_16(SHL32(EXTEND32(right),14),norm);
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_norm r, l;
|
|
l = X[j];
|
|
r = Y[j];
|
|
X[j] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
|
|
/* Side is not encoded, no need to calculate */
|
|
}
|
|
}
|
|
|
|
static void stereo_split(celt_norm *X, celt_norm *Y, int N)
|
|
{
|
|
int j;
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_norm r, l;
|
|
l = MULT16_16_Q15(QCONST16(.70710678f,15), X[j]);
|
|
r = MULT16_16_Q15(QCONST16(.70710678f,15), Y[j]);
|
|
X[j] = l+r;
|
|
Y[j] = r-l;
|
|
}
|
|
}
|
|
|
|
static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N)
|
|
{
|
|
int j;
|
|
opus_val32 xp=0, side=0;
|
|
opus_val32 El, Er;
|
|
opus_val16 mid2;
|
|
#ifdef FIXED_POINT
|
|
int kl, kr;
|
|
#endif
|
|
opus_val32 t, lgain, rgain;
|
|
|
|
/* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
|
dual_inner_prod(Y, X, Y, N, &xp, &side);
|
|
/* Compensating for the mid normalization */
|
|
xp = MULT16_32_Q15(mid, xp);
|
|
/* mid and side are in Q15, not Q14 like X and Y */
|
|
mid2 = SHR32(mid, 1);
|
|
El = MULT16_16(mid2, mid2) + side - 2*xp;
|
|
Er = MULT16_16(mid2, mid2) + side + 2*xp;
|
|
if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28))
|
|
{
|
|
for (j=0;j<N;j++)
|
|
Y[j] = X[j];
|
|
return;
|
|
}
|
|
|
|
#ifdef FIXED_POINT
|
|
kl = celt_ilog2(El)>>1;
|
|
kr = celt_ilog2(Er)>>1;
|
|
#endif
|
|
t = VSHR32(El, (kl-7)<<1);
|
|
lgain = celt_rsqrt_norm(t);
|
|
t = VSHR32(Er, (kr-7)<<1);
|
|
rgain = celt_rsqrt_norm(t);
|
|
|
|
#ifdef FIXED_POINT
|
|
if (kl < 7)
|
|
kl = 7;
|
|
if (kr < 7)
|
|
kr = 7;
|
|
#endif
|
|
|
|
for (j=0;j<N;j++)
|
|
{
|
|
celt_norm r, l;
|
|
/* Apply mid scaling (side is already scaled) */
|
|
l = MULT16_16_Q15(mid, X[j]);
|
|
r = Y[j];
|
|
X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1));
|
|
Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1));
|
|
}
|
|
}
|
|
|
|
/* Decide whether we should spread the pulses in the current frame */
|
|
int spreading_decision(const CELTMode *m, celt_norm *X, int *average,
|
|
int last_decision, int *hf_average, int *tapset_decision, int update_hf,
|
|
int end, int C, int M)
|
|
{
|
|
int i, c, N0;
|
|
int sum = 0, nbBands=0;
|
|
const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
|
int decision;
|
|
int hf_sum=0;
|
|
|
|
celt_assert(end>0);
|
|
|
|
N0 = M*m->shortMdctSize;
|
|
|
|
if (M*(eBands[end]-eBands[end-1]) <= 8)
|
|
return SPREAD_NONE;
|
|
c=0; do {
|
|
for (i=0;i<end;i++)
|
|
{
|
|
int j, N, tmp=0;
|
|
int tcount[3] = {0,0,0};
|
|
celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0;
|
|
N = M*(eBands[i+1]-eBands[i]);
|
|
if (N<=8)
|
|
continue;
|
|
/* Compute rough CDF of |x[j]| */
|
|
for (j=0;j<N;j++)
|
|
{
|
|
opus_val32 x2N; /* Q13 */
|
|
|
|
x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N);
|
|
if (x2N < QCONST16(0.25f,13))
|
|
tcount[0]++;
|
|
if (x2N < QCONST16(0.0625f,13))
|
|
tcount[1]++;
|
|
if (x2N < QCONST16(0.015625f,13))
|
|
tcount[2]++;
|
|
}
|
|
|
|
/* Only include four last bands (8 kHz and up) */
|
|
if (i>m->nbEBands-4)
|
|
hf_sum += 32*(tcount[1]+tcount[0])/N;
|
|
tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
|
|
sum += tmp*256;
|
|
nbBands++;
|
|
}
|
|
} while (++c<C);
|
|
|
|
if (update_hf)
|
|
{
|
|
if (hf_sum)
|
|
hf_sum /= C*(4-m->nbEBands+end);
|
|
*hf_average = (*hf_average+hf_sum)>>1;
|
|
hf_sum = *hf_average;
|
|
if (*tapset_decision==2)
|
|
hf_sum += 4;
|
|
else if (*tapset_decision==0)
|
|
hf_sum -= 4;
|
|
if (hf_sum > 22)
|
|
*tapset_decision=2;
|
|
else if (hf_sum > 18)
|
|
*tapset_decision=1;
|
|
else
|
|
*tapset_decision=0;
|
|
}
|
|
/*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
|
|
celt_assert(nbBands>0); /* end has to be non-zero */
|
|
sum /= nbBands;
|
|
/* Recursive averaging */
|
|
sum = (sum+*average)>>1;
|
|
*average = sum;
|
|
/* Hysteresis */
|
|
sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2;
|
|
if (sum < 80)
|
|
{
|
|
decision = SPREAD_AGGRESSIVE;
|
|
} else if (sum < 256)
|
|
{
|
|
decision = SPREAD_NORMAL;
|
|
} else if (sum < 384)
|
|
{
|
|
decision = SPREAD_LIGHT;
|
|
} else {
|
|
decision = SPREAD_NONE;
|
|
}
|
|
#ifdef FUZZING
|
|
decision = rand()&0x3;
|
|
*tapset_decision=rand()%3;
|
|
#endif
|
|
return decision;
|
|
}
|
|
|
|
/* Indexing table for converting from natural Hadamard to ordery Hadamard
|
|
This is essentially a bit-reversed Gray, on top of which we've added
|
|
an inversion of the order because we want the DC at the end rather than
|
|
the beginning. The lines are for N=2, 4, 8, 16 */
|
|
static const int ordery_table[] = {
|
|
1, 0,
|
|
3, 0, 2, 1,
|
|
7, 0, 4, 3, 6, 1, 5, 2,
|
|
15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5,
|
|
};
|
|
|
|
static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
|
{
|
|
int i,j;
|
|
VARDECL(celt_norm, tmp);
|
|
int N;
|
|
SAVE_STACK;
|
|
N = N0*stride;
|
|
ALLOC(tmp, N, celt_norm);
|
|
celt_assert(stride>0);
|
|
if (hadamard)
|
|
{
|
|
const int *ordery = ordery_table+stride-2;
|
|
for (i=0;i<stride;i++)
|
|
{
|
|
for (j=0;j<N0;j++)
|
|
tmp[ordery[i]*N0+j] = X[j*stride+i];
|
|
}
|
|
} else {
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
tmp[i*N0+j] = X[j*stride+i];
|
|
}
|
|
for (j=0;j<N;j++)
|
|
X[j] = tmp[j];
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
|
{
|
|
int i,j;
|
|
VARDECL(celt_norm, tmp);
|
|
int N;
|
|
SAVE_STACK;
|
|
N = N0*stride;
|
|
ALLOC(tmp, N, celt_norm);
|
|
if (hadamard)
|
|
{
|
|
const int *ordery = ordery_table+stride-2;
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
tmp[j*stride+i] = X[ordery[i]*N0+j];
|
|
} else {
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
tmp[j*stride+i] = X[i*N0+j];
|
|
}
|
|
for (j=0;j<N;j++)
|
|
X[j] = tmp[j];
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
void haar1(celt_norm *X, int N0, int stride)
|
|
{
|
|
int i, j;
|
|
N0 >>= 1;
|
|
for (i=0;i<stride;i++)
|
|
for (j=0;j<N0;j++)
|
|
{
|
|
celt_norm tmp1, tmp2;
|
|
tmp1 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*2*j+i]);
|
|
tmp2 = MULT16_16_Q15(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]);
|
|
X[stride*2*j+i] = tmp1 + tmp2;
|
|
X[stride*(2*j+1)+i] = tmp1 - tmp2;
|
|
}
|
|
}
|
|
|
|
static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
|
|
{
|
|
static const opus_int16 exp2_table8[8] =
|
|
{16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
|
|
int qn, qb;
|
|
int N2 = 2*N-1;
|
|
if (stereo && N==2)
|
|
N2--;
|
|
/* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
|
always have enough bits left over to code at least one pulse in the
|
|
side; otherwise it would collapse, since it doesn't get folded. */
|
|
qb = IMIN(b-pulse_cap-(4<<BITRES), (b+N2*offset)/N2);
|
|
|
|
qb = IMIN(8<<BITRES, qb);
|
|
|
|
if (qb<(1<<BITRES>>1)) {
|
|
qn = 1;
|
|
} else {
|
|
qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
|
|
qn = (qn+1)>>1<<1;
|
|
}
|
|
celt_assert(qn <= 256);
|
|
return qn;
|
|
}
|
|
|
|
struct band_ctx {
|
|
int encode;
|
|
const CELTMode *m;
|
|
int i;
|
|
int intensity;
|
|
int spread;
|
|
int tf_change;
|
|
ec_ctx *ec;
|
|
opus_int32 remaining_bits;
|
|
const celt_ener *bandE;
|
|
opus_uint32 seed;
|
|
};
|
|
|
|
struct split_ctx {
|
|
int inv;
|
|
int imid;
|
|
int iside;
|
|
int delta;
|
|
int itheta;
|
|
int qalloc;
|
|
};
|
|
|
|
static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
|
|
celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
|
|
int LM,
|
|
int stereo, int *fill)
|
|
{
|
|
int qn;
|
|
int itheta=0;
|
|
int delta;
|
|
int imid, iside;
|
|
int qalloc;
|
|
int pulse_cap;
|
|
int offset;
|
|
opus_int32 tell;
|
|
int inv=0;
|
|
int encode;
|
|
const CELTMode *m;
|
|
int i;
|
|
int intensity;
|
|
ec_ctx *ec;
|
|
const celt_ener *bandE;
|
|
|
|
encode = ctx->encode;
|
|
m = ctx->m;
|
|
i = ctx->i;
|
|
intensity = ctx->intensity;
|
|
ec = ctx->ec;
|
|
bandE = ctx->bandE;
|
|
|
|
/* Decide on the resolution to give to the split parameter theta */
|
|
pulse_cap = m->logN[i]+LM*(1<<BITRES);
|
|
offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
|
|
qn = compute_qn(N, *b, offset, pulse_cap, stereo);
|
|
if (stereo && i>=intensity)
|
|
qn = 1;
|
|
if (encode)
|
|
{
|
|
/* theta is the atan() of the ratio between the (normalized)
|
|
side and mid. With just that parameter, we can re-scale both
|
|
mid and side because we know that 1) they have unit norm and
|
|
2) they are orthogonal. */
|
|
itheta = stereo_itheta(X, Y, stereo, N);
|
|
}
|
|
tell = ec_tell_frac(ec);
|
|
if (qn!=1)
|
|
{
|
|
if (encode)
|
|
itheta = (itheta*qn+8192)>>14;
|
|
|
|
/* Entropy coding of the angle. We use a uniform pdf for the
|
|
time split, a step for stereo, and a triangular one for the rest. */
|
|
if (stereo && N>2)
|
|
{
|
|
int p0 = 3;
|
|
int x = itheta;
|
|
int x0 = qn/2;
|
|
int ft = p0*(x0+1) + x0;
|
|
/* Use a probability of p0 up to itheta=8192 and then use 1 after */
|
|
if (encode)
|
|
{
|
|
ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
|
} else {
|
|
int fs;
|
|
fs=ec_decode(ec,ft);
|
|
if (fs<(x0+1)*p0)
|
|
x=fs/p0;
|
|
else
|
|
x=x0+1+(fs-(x0+1)*p0);
|
|
ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
|
itheta = x;
|
|
}
|
|
} else if (B0>1 || stereo) {
|
|
/* Uniform pdf */
|
|
if (encode)
|
|
ec_enc_uint(ec, itheta, qn+1);
|
|
else
|
|
itheta = ec_dec_uint(ec, qn+1);
|
|
} else {
|
|
int fs=1, ft;
|
|
ft = ((qn>>1)+1)*((qn>>1)+1);
|
|
if (encode)
|
|
{
|
|
int fl;
|
|
|
|
fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
|
fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
|
ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
|
|
|
ec_encode(ec, fl, fl+fs, ft);
|
|
} else {
|
|
/* Triangular pdf */
|
|
int fl=0;
|
|
int fm;
|
|
fm = ec_decode(ec, ft);
|
|
|
|
if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
|
{
|
|
itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
|
|
fs = itheta + 1;
|
|
fl = itheta*(itheta + 1)>>1;
|
|
}
|
|
else
|
|
{
|
|
itheta = (2*(qn + 1)
|
|
- isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
|
|
fs = qn + 1 - itheta;
|
|
fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
|
}
|
|
|
|
ec_dec_update(ec, fl, fl+fs, ft);
|
|
}
|
|
}
|
|
itheta = (opus_int32)itheta*16384/qn;
|
|
if (encode && stereo)
|
|
{
|
|
if (itheta==0)
|
|
intensity_stereo(m, X, Y, bandE, i, N);
|
|
else
|
|
stereo_split(X, Y, N);
|
|
}
|
|
/* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
|
Let's do that at higher complexity */
|
|
} else if (stereo) {
|
|
if (encode)
|
|
{
|
|
inv = itheta > 8192;
|
|
if (inv)
|
|
{
|
|
int j;
|
|
for (j=0;j<N;j++)
|
|
Y[j] = -Y[j];
|
|
}
|
|
intensity_stereo(m, X, Y, bandE, i, N);
|
|
}
|
|
if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
|
|
{
|
|
if (encode)
|
|
ec_enc_bit_logp(ec, inv, 2);
|
|
else
|
|
inv = ec_dec_bit_logp(ec, 2);
|
|
} else
|
|
inv = 0;
|
|
itheta = 0;
|
|
}
|
|
qalloc = ec_tell_frac(ec) - tell;
|
|
*b -= qalloc;
|
|
|
|
if (itheta == 0)
|
|
{
|
|
imid = 32767;
|
|
iside = 0;
|
|
*fill &= (1<<B)-1;
|
|
delta = -16384;
|
|
} else if (itheta == 16384)
|
|
{
|
|
imid = 0;
|
|
iside = 32767;
|
|
*fill &= ((1<<B)-1)<<B;
|
|
delta = 16384;
|
|
} else {
|
|
imid = bitexact_cos((opus_int16)itheta);
|
|
iside = bitexact_cos((opus_int16)(16384-itheta));
|
|
/* This is the mid vs side allocation that minimizes squared error
|
|
in that band. */
|
|
delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
|
}
|
|
|
|
sctx->inv = inv;
|
|
sctx->imid = imid;
|
|
sctx->iside = iside;
|
|
sctx->delta = delta;
|
|
sctx->itheta = itheta;
|
|
sctx->qalloc = qalloc;
|
|
}
|
|
static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
|
|
celt_norm *lowband_out)
|
|
{
|
|
#ifdef RESYNTH
|
|
int resynth = 1;
|
|
#else
|
|
int resynth = !ctx->encode;
|
|
#endif
|
|
int c;
|
|
int stereo;
|
|
celt_norm *x = X;
|
|
int encode;
|
|
ec_ctx *ec;
|
|
|
|
encode = ctx->encode;
|
|
ec = ctx->ec;
|
|
|
|
stereo = Y != NULL;
|
|
c=0; do {
|
|
int sign=0;
|
|
if (ctx->remaining_bits>=1<<BITRES)
|
|
{
|
|
if (encode)
|
|
{
|
|
sign = x[0]<0;
|
|
ec_enc_bits(ec, sign, 1);
|
|
} else {
|
|
sign = ec_dec_bits(ec, 1);
|
|
}
|
|
ctx->remaining_bits -= 1<<BITRES;
|
|
b-=1<<BITRES;
|
|
}
|
|
if (resynth)
|
|
x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
|
x = Y;
|
|
} while (++c<1+stereo);
|
|
if (lowband_out)
|
|
lowband_out[0] = SHR16(X[0],4);
|
|
return 1;
|
|
}
|
|
|
|
/* This function is responsible for encoding and decoding a mono partition.
|
|
It can split the band in two and transmit the energy difference with
|
|
the two half-bands. It can be called recursively so bands can end up being
|
|
split in 8 parts. */
|
|
static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
|
|
int N, int b, int B, celt_norm *lowband,
|
|
int LM,
|
|
opus_val16 gain, int fill)
|
|
{
|
|
const unsigned char *cache;
|
|
int q;
|
|
int curr_bits;
|
|
int imid=0, iside=0;
|
|
int B0=B;
|
|
opus_val16 mid=0, side=0;
|
|
unsigned cm=0;
|
|
#ifdef RESYNTH
|
|
int resynth = 1;
|
|
#else
|
|
int resynth = !ctx->encode;
|
|
#endif
|
|
celt_norm *Y=NULL;
|
|
int encode;
|
|
const CELTMode *m;
|
|
int i;
|
|
int spread;
|
|
ec_ctx *ec;
|
|
|
|
encode = ctx->encode;
|
|
m = ctx->m;
|
|
i = ctx->i;
|
|
spread = ctx->spread;
|
|
ec = ctx->ec;
|
|
|
|
/* If we need 1.5 more bit than we can produce, split the band in two. */
|
|
cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
|
|
if (LM != -1 && b > cache[cache[0]]+12 && N>2)
|
|
{
|
|
int mbits, sbits, delta;
|
|
int itheta;
|
|
int qalloc;
|
|
struct split_ctx sctx;
|
|
celt_norm *next_lowband2=NULL;
|
|
opus_int32 rebalance;
|
|
|
|
N >>= 1;
|
|
Y = X+N;
|
|
LM -= 1;
|
|
if (B==1)
|
|
fill = (fill&1)|(fill<<1);
|
|
B = (B+1)>>1;
|
|
|
|
compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
|
|
LM, 0, &fill);
|
|
imid = sctx.imid;
|
|
iside = sctx.iside;
|
|
delta = sctx.delta;
|
|
itheta = sctx.itheta;
|
|
qalloc = sctx.qalloc;
|
|
#ifdef FIXED_POINT
|
|
mid = imid;
|
|
side = iside;
|
|
#else
|
|
mid = (1.f/32768)*imid;
|
|
side = (1.f/32768)*iside;
|
|
#endif
|
|
|
|
/* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
|
if (B0>1 && (itheta&0x3fff))
|
|
{
|
|
if (itheta > 8192)
|
|
/* Rough approximation for pre-echo masking */
|
|
delta -= delta>>(4-LM);
|
|
else
|
|
/* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
|
|
delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
|
|
}
|
|
mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
|
sbits = b-mbits;
|
|
ctx->remaining_bits -= qalloc;
|
|
|
|
if (lowband)
|
|
next_lowband2 = lowband+N; /* >32-bit split case */
|
|
|
|
rebalance = ctx->remaining_bits;
|
|
if (mbits >= sbits)
|
|
{
|
|
cm = quant_partition(ctx, X, N, mbits, B,
|
|
lowband, LM,
|
|
MULT16_16_P15(gain,mid), fill);
|
|
rebalance = mbits - (rebalance-ctx->remaining_bits);
|
|
if (rebalance > 3<<BITRES && itheta!=0)
|
|
sbits += rebalance - (3<<BITRES);
|
|
cm |= quant_partition(ctx, Y, N, sbits, B,
|
|
next_lowband2, LM,
|
|
MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
|
} else {
|
|
cm = quant_partition(ctx, Y, N, sbits, B,
|
|
next_lowband2, LM,
|
|
MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
|
rebalance = sbits - (rebalance-ctx->remaining_bits);
|
|
if (rebalance > 3<<BITRES && itheta!=16384)
|
|
mbits += rebalance - (3<<BITRES);
|
|
cm |= quant_partition(ctx, X, N, mbits, B,
|
|
lowband, LM,
|
|
MULT16_16_P15(gain,mid), fill);
|
|
}
|
|
} else {
|
|
/* This is the basic no-split case */
|
|
q = bits2pulses(m, i, LM, b);
|
|
curr_bits = pulses2bits(m, i, LM, q);
|
|
ctx->remaining_bits -= curr_bits;
|
|
|
|
/* Ensures we can never bust the budget */
|
|
while (ctx->remaining_bits < 0 && q > 0)
|
|
{
|
|
ctx->remaining_bits += curr_bits;
|
|
q--;
|
|
curr_bits = pulses2bits(m, i, LM, q);
|
|
ctx->remaining_bits -= curr_bits;
|
|
}
|
|
|
|
if (q!=0)
|
|
{
|
|
int K = get_pulses(q);
|
|
|
|
/* Finally do the actual quantization */
|
|
if (encode)
|
|
{
|
|
cm = alg_quant(X, N, K, spread, B, ec
|
|
#ifdef RESYNTH
|
|
, gain
|
|
#endif
|
|
);
|
|
} else {
|
|
cm = alg_unquant(X, N, K, spread, B, ec, gain);
|
|
}
|
|
} else {
|
|
/* If there's no pulse, fill the band anyway */
|
|
int j;
|
|
if (resynth)
|
|
{
|
|
unsigned cm_mask;
|
|
/* B can be as large as 16, so this shift might overflow an int on a
|
|
16-bit platform; use a long to get defined behavior.*/
|
|
cm_mask = (unsigned)(1UL<<B)-1;
|
|
fill &= cm_mask;
|
|
if (!fill)
|
|
{
|
|
for (j=0;j<N;j++)
|
|
X[j] = 0;
|
|
} else {
|
|
if (lowband == NULL)
|
|
{
|
|
/* Noise */
|
|
for (j=0;j<N;j++)
|
|
{
|
|
ctx->seed = celt_lcg_rand(ctx->seed);
|
|
X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
|
|
}
|
|
cm = cm_mask;
|
|
} else {
|
|
/* Folded spectrum */
|
|
for (j=0;j<N;j++)
|
|
{
|
|
opus_val16 tmp;
|
|
ctx->seed = celt_lcg_rand(ctx->seed);
|
|
/* About 48 dB below the "normal" folding level */
|
|
tmp = QCONST16(1.0f/256, 10);
|
|
tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
|
|
X[j] = lowband[j]+tmp;
|
|
}
|
|
cm = fill;
|
|
}
|
|
renormalise_vector(X, N, gain);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return cm;
|
|
}
|
|
|
|
|
|
/* This function is responsible for encoding and decoding a band for the mono case. */
|
|
static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
|
|
int N, int b, int B, celt_norm *lowband,
|
|
int LM, celt_norm *lowband_out,
|
|
opus_val16 gain, celt_norm *lowband_scratch, int fill)
|
|
{
|
|
int N0=N;
|
|
int N_B=N;
|
|
int N_B0;
|
|
int B0=B;
|
|
int time_divide=0;
|
|
int recombine=0;
|
|
int longBlocks;
|
|
unsigned cm=0;
|
|
#ifdef RESYNTH
|
|
int resynth = 1;
|
|
#else
|
|
int resynth = !ctx->encode;
|
|
#endif
|
|
int k;
|
|
int encode;
|
|
int tf_change;
|
|
|
|
encode = ctx->encode;
|
|
tf_change = ctx->tf_change;
|
|
|
|
longBlocks = B0==1;
|
|
|
|
N_B /= B;
|
|
|
|
/* Special case for one sample */
|
|
if (N==1)
|
|
{
|
|
return quant_band_n1(ctx, X, NULL, b, lowband_out);
|
|
}
|
|
|
|
if (tf_change>0)
|
|
recombine = tf_change;
|
|
/* Band recombining to increase frequency resolution */
|
|
|
|
if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
|
|
{
|
|
int j;
|
|
for (j=0;j<N;j++)
|
|
lowband_scratch[j] = lowband[j];
|
|
lowband = lowband_scratch;
|
|
}
|
|
|
|
for (k=0;k<recombine;k++)
|
|
{
|
|
static const unsigned char bit_interleave_table[16]={
|
|
0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
|
|
};
|
|
if (encode)
|
|
haar1(X, N>>k, 1<<k);
|
|
if (lowband)
|
|
haar1(lowband, N>>k, 1<<k);
|
|
fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
|
|
}
|
|
B>>=recombine;
|
|
N_B<<=recombine;
|
|
|
|
/* Increasing the time resolution */
|
|
while ((N_B&1) == 0 && tf_change<0)
|
|
{
|
|
if (encode)
|
|
haar1(X, N_B, B);
|
|
if (lowband)
|
|
haar1(lowband, N_B, B);
|
|
fill |= fill<<B;
|
|
B <<= 1;
|
|
N_B >>= 1;
|
|
time_divide++;
|
|
tf_change++;
|
|
}
|
|
B0=B;
|
|
N_B0 = N_B;
|
|
|
|
/* Reorganize the samples in time order instead of frequency order */
|
|
if (B0>1)
|
|
{
|
|
if (encode)
|
|
deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
|
if (lowband)
|
|
deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
|
|
}
|
|
|
|
cm = quant_partition(ctx, X, N, b, B, lowband,
|
|
LM, gain, fill);
|
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
|
if (resynth)
|
|
{
|
|
/* Undo the sample reorganization going from time order to frequency order */
|
|
if (B0>1)
|
|
interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
|
|
|
/* Undo time-freq changes that we did earlier */
|
|
N_B = N_B0;
|
|
B = B0;
|
|
for (k=0;k<time_divide;k++)
|
|
{
|
|
B >>= 1;
|
|
N_B <<= 1;
|
|
cm |= cm>>B;
|
|
haar1(X, N_B, B);
|
|
}
|
|
|
|
for (k=0;k<recombine;k++)
|
|
{
|
|
static const unsigned char bit_deinterleave_table[16]={
|
|
0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
|
|
0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
|
|
};
|
|
cm = bit_deinterleave_table[cm];
|
|
haar1(X, N0>>k, 1<<k);
|
|
}
|
|
B<<=recombine;
|
|
|
|
/* Scale output for later folding */
|
|
if (lowband_out)
|
|
{
|
|
int j;
|
|
opus_val16 n;
|
|
n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
|
for (j=0;j<N0;j++)
|
|
lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
|
}
|
|
cm &= (1<<B)-1;
|
|
}
|
|
return cm;
|
|
}
|
|
|
|
|
|
/* This function is responsible for encoding and decoding a band for the stereo case. */
|
|
static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
|
|
int N, int b, int B, celt_norm *lowband,
|
|
int LM, celt_norm *lowband_out,
|
|
celt_norm *lowband_scratch, int fill)
|
|
{
|
|
int imid=0, iside=0;
|
|
int inv = 0;
|
|
opus_val16 mid=0, side=0;
|
|
unsigned cm=0;
|
|
#ifdef RESYNTH
|
|
int resynth = 1;
|
|
#else
|
|
int resynth = !ctx->encode;
|
|
#endif
|
|
int mbits, sbits, delta;
|
|
int itheta;
|
|
int qalloc;
|
|
struct split_ctx sctx;
|
|
int orig_fill;
|
|
int encode;
|
|
ec_ctx *ec;
|
|
|
|
encode = ctx->encode;
|
|
ec = ctx->ec;
|
|
|
|
/* Special case for one sample */
|
|
if (N==1)
|
|
{
|
|
return quant_band_n1(ctx, X, Y, b, lowband_out);
|
|
}
|
|
|
|
orig_fill = fill;
|
|
|
|
compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
|
|
LM, 1, &fill);
|
|
inv = sctx.inv;
|
|
imid = sctx.imid;
|
|
iside = sctx.iside;
|
|
delta = sctx.delta;
|
|
itheta = sctx.itheta;
|
|
qalloc = sctx.qalloc;
|
|
#ifdef FIXED_POINT
|
|
mid = imid;
|
|
side = iside;
|
|
#else
|
|
mid = (1.f/32768)*imid;
|
|
side = (1.f/32768)*iside;
|
|
#endif
|
|
|
|
/* This is a special case for N=2 that only works for stereo and takes
|
|
advantage of the fact that mid and side are orthogonal to encode
|
|
the side with just one bit. */
|
|
if (N==2)
|
|
{
|
|
int c;
|
|
int sign=0;
|
|
celt_norm *x2, *y2;
|
|
mbits = b;
|
|
sbits = 0;
|
|
/* Only need one bit for the side. */
|
|
if (itheta != 0 && itheta != 16384)
|
|
sbits = 1<<BITRES;
|
|
mbits -= sbits;
|
|
c = itheta > 8192;
|
|
ctx->remaining_bits -= qalloc+sbits;
|
|
|
|
x2 = c ? Y : X;
|
|
y2 = c ? X : Y;
|
|
if (sbits)
|
|
{
|
|
if (encode)
|
|
{
|
|
/* Here we only need to encode a sign for the side. */
|
|
sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
|
|
ec_enc_bits(ec, sign, 1);
|
|
} else {
|
|
sign = ec_dec_bits(ec, 1);
|
|
}
|
|
}
|
|
sign = 1-2*sign;
|
|
/* We use orig_fill here because we want to fold the side, but if
|
|
itheta==16384, we'll have cleared the low bits of fill. */
|
|
cm = quant_band(ctx, x2, N, mbits, B, lowband,
|
|
LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
|
|
/* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
|
and there's no need to worry about mixing with the other channel. */
|
|
y2[0] = -sign*x2[1];
|
|
y2[1] = sign*x2[0];
|
|
if (resynth)
|
|
{
|
|
celt_norm tmp;
|
|
X[0] = MULT16_16_Q15(mid, X[0]);
|
|
X[1] = MULT16_16_Q15(mid, X[1]);
|
|
Y[0] = MULT16_16_Q15(side, Y[0]);
|
|
Y[1] = MULT16_16_Q15(side, Y[1]);
|
|
tmp = X[0];
|
|
X[0] = SUB16(tmp,Y[0]);
|
|
Y[0] = ADD16(tmp,Y[0]);
|
|
tmp = X[1];
|
|
X[1] = SUB16(tmp,Y[1]);
|
|
Y[1] = ADD16(tmp,Y[1]);
|
|
}
|
|
} else {
|
|
/* "Normal" split code */
|
|
opus_int32 rebalance;
|
|
|
|
mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
|
sbits = b-mbits;
|
|
ctx->remaining_bits -= qalloc;
|
|
|
|
rebalance = ctx->remaining_bits;
|
|
if (mbits >= sbits)
|
|
{
|
|
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
|
mid for folding later. */
|
|
cm = quant_band(ctx, X, N, mbits, B,
|
|
lowband, LM, lowband_out,
|
|
Q15ONE, lowband_scratch, fill);
|
|
rebalance = mbits - (rebalance-ctx->remaining_bits);
|
|
if (rebalance > 3<<BITRES && itheta!=0)
|
|
sbits += rebalance - (3<<BITRES);
|
|
|
|
/* For a stereo split, the high bits of fill are always zero, so no
|
|
folding will be done to the side. */
|
|
cm |= quant_band(ctx, Y, N, sbits, B,
|
|
NULL, LM, NULL,
|
|
side, NULL, fill>>B);
|
|
} else {
|
|
/* For a stereo split, the high bits of fill are always zero, so no
|
|
folding will be done to the side. */
|
|
cm = quant_band(ctx, Y, N, sbits, B,
|
|
NULL, LM, NULL,
|
|
side, NULL, fill>>B);
|
|
rebalance = sbits - (rebalance-ctx->remaining_bits);
|
|
if (rebalance > 3<<BITRES && itheta!=16384)
|
|
mbits += rebalance - (3<<BITRES);
|
|
/* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
|
mid for folding later. */
|
|
cm |= quant_band(ctx, X, N, mbits, B,
|
|
lowband, LM, lowband_out,
|
|
Q15ONE, lowband_scratch, fill);
|
|
}
|
|
}
|
|
|
|
|
|
/* This code is used by the decoder and by the resynthesis-enabled encoder */
|
|
if (resynth)
|
|
{
|
|
if (N!=2)
|
|
stereo_merge(X, Y, mid, N);
|
|
if (inv)
|
|
{
|
|
int j;
|
|
for (j=0;j<N;j++)
|
|
Y[j] = -Y[j];
|
|
}
|
|
}
|
|
return cm;
|
|
}
|
|
|
|
|
|
void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
|
celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses,
|
|
int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res,
|
|
opus_int32 total_bits, opus_int32 balance, ec_ctx *ec, int LM, int codedBands, opus_uint32 *seed)
|
|
{
|
|
int i;
|
|
opus_int32 remaining_bits;
|
|
const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
|
celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
|
|
VARDECL(celt_norm, _norm);
|
|
celt_norm *lowband_scratch;
|
|
int B;
|
|
int M;
|
|
int lowband_offset;
|
|
int update_lowband = 1;
|
|
int C = Y_ != NULL ? 2 : 1;
|
|
int norm_offset;
|
|
#ifdef RESYNTH
|
|
int resynth = 1;
|
|
#else
|
|
int resynth = !encode;
|
|
#endif
|
|
struct band_ctx ctx;
|
|
SAVE_STACK;
|
|
|
|
M = 1<<LM;
|
|
B = shortBlocks ? M : 1;
|
|
norm_offset = M*eBands[start];
|
|
/* No need to allocate norm for the last band because we don't need an
|
|
output in that band. */
|
|
ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
|
|
norm = _norm;
|
|
norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
|
|
/* We can use the last band as scratch space because we don't need that
|
|
scratch space for the last band. */
|
|
lowband_scratch = X_+M*eBands[m->nbEBands-1];
|
|
|
|
lowband_offset = 0;
|
|
ctx.bandE = bandE;
|
|
ctx.ec = ec;
|
|
ctx.encode = encode;
|
|
ctx.intensity = intensity;
|
|
ctx.m = m;
|
|
ctx.seed = *seed;
|
|
ctx.spread = spread;
|
|
for (i=start;i<end;i++)
|
|
{
|
|
opus_int32 tell;
|
|
int b;
|
|
int N;
|
|
opus_int32 curr_balance;
|
|
int effective_lowband=-1;
|
|
celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y;
|
|
int tf_change=0;
|
|
unsigned x_cm;
|
|
unsigned y_cm;
|
|
int last;
|
|
|
|
ctx.i = i;
|
|
last = (i==end-1);
|
|
|
|
X = X_+M*eBands[i];
|
|
if (Y_!=NULL)
|
|
Y = Y_+M*eBands[i];
|
|
else
|
|
Y = NULL;
|
|
N = M*eBands[i+1]-M*eBands[i];
|
|
tell = ec_tell_frac(ec);
|
|
|
|
/* Compute how many bits we want to allocate to this band */
|
|
if (i != start)
|
|
balance -= tell;
|
|
remaining_bits = total_bits-tell-1;
|
|
ctx.remaining_bits = remaining_bits;
|
|
if (i <= codedBands-1)
|
|
{
|
|
curr_balance = balance / IMIN(3, codedBands-i);
|
|
b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)));
|
|
} else {
|
|
b = 0;
|
|
}
|
|
|
|
if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
|
|
lowband_offset = i;
|
|
|
|
tf_change = tf_res[i];
|
|
ctx.tf_change = tf_change;
|
|
if (i>=m->effEBands)
|
|
{
|
|
X=norm;
|
|
if (Y_!=NULL)
|
|
Y = norm;
|
|
lowband_scratch = NULL;
|
|
}
|
|
if (i==end-1)
|
|
lowband_scratch = NULL;
|
|
|
|
/* Get a conservative estimate of the collapse_mask's for the bands we're
|
|
going to be folding from. */
|
|
if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
|
|
{
|
|
int fold_start;
|
|
int fold_end;
|
|
int fold_i;
|
|
/* This ensures we never repeat spectral content within one band */
|
|
effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
|
|
fold_start = lowband_offset;
|
|
while(M*eBands[--fold_start] > effective_lowband+norm_offset);
|
|
fold_end = lowband_offset-1;
|
|
while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
|
|
x_cm = y_cm = 0;
|
|
fold_i = fold_start; do {
|
|
x_cm |= collapse_masks[fold_i*C+0];
|
|
y_cm |= collapse_masks[fold_i*C+C-1];
|
|
} while (++fold_i<fold_end);
|
|
}
|
|
/* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
|
always) be non-zero. */
|
|
else
|
|
x_cm = y_cm = (1<<B)-1;
|
|
|
|
if (dual_stereo && i==intensity)
|
|
{
|
|
int j;
|
|
|
|
/* Switch off dual stereo to do intensity. */
|
|
dual_stereo = 0;
|
|
if (resynth)
|
|
for (j=0;j<M*eBands[i]-norm_offset;j++)
|
|
norm[j] = HALF32(norm[j]+norm2[j]);
|
|
}
|
|
if (dual_stereo)
|
|
{
|
|
x_cm = quant_band(&ctx, X, N, b/2, B,
|
|
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
|
last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
|
|
y_cm = quant_band(&ctx, Y, N, b/2, B,
|
|
effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
|
|
last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
|
|
} else {
|
|
if (Y!=NULL)
|
|
{
|
|
x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
|
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
|
last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
|
|
} else {
|
|
x_cm = quant_band(&ctx, X, N, b, B,
|
|
effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
|
last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
|
|
}
|
|
y_cm = x_cm;
|
|
}
|
|
collapse_masks[i*C+0] = (unsigned char)x_cm;
|
|
collapse_masks[i*C+C-1] = (unsigned char)y_cm;
|
|
balance += pulses[i] + tell;
|
|
|
|
/* Update the folding position only as long as we have 1 bit/sample depth. */
|
|
update_lowband = b>(N<<BITRES);
|
|
}
|
|
*seed = ctx.seed;
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|