jamulus/src/client.cpp
2013-03-24 10:49:25 +00:00

1236 lines
41 KiB
C++
Executable File

/******************************************************************************\
* Copyright (c) 2004-2013
*
* Author(s):
* Volker Fischer
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#include "client.h"
/* Implementation *************************************************************/
CClient::CClient ( const quint16 iPortNumber ) :
vstrIPAddress ( MAX_NUM_SERVER_ADDR_ITEMS, "" ),
ChannelInfo (),
vecStoredFaderTags ( MAX_NUM_STORED_FADER_LEVELS, "" ),
vecStoredFaderLevels ( MAX_NUM_STORED_FADER_LEVELS, AUD_MIX_FADER_MAX ),
Channel ( false ), /* we need a client channel -> "false" */
eAudioCompressionType ( CT_OPUS ),
iCeltNumCodedBytes ( CELT_NUM_BYTES_MONO_NORMAL_QUALITY ),
bCeltDoHighQuality ( false ),
bUseStereo ( false ),
bIsInitializationPhase ( true ),
Socket ( &Channel, &ConnLessProtocol, iPortNumber ),
Sound ( AudioCallback, this ),
iAudioInFader ( AUD_FADER_IN_MIDDLE ),
bReverbOnLeftChan ( false ),
iReverbLevel ( 0 ),
iSndCrdPrefFrameSizeFactor ( FRAME_SIZE_FACTOR_PREFERRED ),
iSndCrdFrameSizeFactor ( FRAME_SIZE_FACTOR_PREFERRED ),
bSndCrdConversionBufferRequired ( false ),
iSndCardMonoBlockSizeSamConvBuff ( 0 ),
bFraSiFactPrefSupported ( false ),
bFraSiFactDefSupported ( false ),
bFraSiFactSafeSupported ( false ),
bOpenChatOnNewMessage ( true ),
eGUIDesign ( GD_ORIGINAL ),
strCentralServerAddress ( "" ),
bUseDefaultCentralServerAddress ( true ),
iServerSockBufNumFrames ( DEF_NET_BUF_SIZE_NUM_BL )
{
int iOpusError;
// init audio encoder/decoder (mono)
CeltModeMono = cc6_celt_mode_create (
SYSTEM_SAMPLE_RATE_HZ, 1, SYSTEM_FRAME_SIZE_SAMPLES, NULL );
CeltEncoderMono = cc6_celt_encoder_create ( CeltModeMono );
CeltDecoderMono = cc6_celt_decoder_create ( CeltModeMono );
#ifdef USE_LOW_COMPLEXITY_CELT_ENC
// set encoder low complexity
cc6_celt_encoder_ctl ( CeltEncoderMono,
cc6_CELT_SET_COMPLEXITY ( 1 ) );
#endif
OpusMode = opus_custom_mode_create ( SYSTEM_SAMPLE_RATE_HZ,
SYSTEM_FRAME_SIZE_SAMPLES,
&iOpusError );
OpusEncoderMono = opus_custom_encoder_create ( OpusMode,
1,
&iOpusError );
OpusDecoderMono = opus_custom_decoder_create ( OpusMode,
1,
&iOpusError );
// we require a constant bit rate
opus_custom_encoder_ctl ( OpusEncoderMono,
OPUS_SET_VBR ( 0 ) );
// we want as low delay as possible
opus_custom_encoder_ctl ( OpusEncoderMono,
OPUS_SET_APPLICATION ( OPUS_APPLICATION_RESTRICTED_LOWDELAY ) );
#ifdef USE_LOW_COMPLEXITY_CELT_ENC
// set encoder low complexity
opus_custom_encoder_ctl ( OpusEncoderMono,
OPUS_SET_COMPLEXITY ( 1 ) );
#endif
// init audio encoder/decoder (stereo)
CeltModeStereo = cc6_celt_mode_create (
SYSTEM_SAMPLE_RATE_HZ, 2, SYSTEM_FRAME_SIZE_SAMPLES, NULL );
CeltEncoderStereo = cc6_celt_encoder_create ( CeltModeStereo );
CeltDecoderStereo = cc6_celt_decoder_create ( CeltModeStereo );
#ifdef USE_LOW_COMPLEXITY_CELT_ENC
// set encoder low complexity
cc6_celt_encoder_ctl ( CeltEncoderStereo,
cc6_CELT_SET_COMPLEXITY ( 1 ) );
#endif
OpusEncoderStereo = opus_custom_encoder_create ( OpusMode,
2,
&iOpusError );
OpusDecoderStereo = opus_custom_decoder_create ( OpusMode,
2,
&iOpusError );
// we require a constant bit rate
opus_custom_encoder_ctl ( OpusEncoderStereo,
OPUS_SET_VBR ( 0 ) );
// we want as low delay as possible
opus_custom_encoder_ctl ( OpusEncoderStereo,
OPUS_SET_APPLICATION ( OPUS_APPLICATION_RESTRICTED_LOWDELAY ) );
#ifdef USE_LOW_COMPLEXITY_CELT_ENC
// set encoder low complexity
opus_custom_encoder_ctl ( OpusEncoderStereo,
OPUS_SET_COMPLEXITY ( 1 ) );
#endif
// Connections -------------------------------------------------------------
// connection for protocol
QObject::connect ( &Channel,
SIGNAL ( MessReadyForSending ( CVector<uint8_t> ) ),
this, SLOT ( OnSendProtMessage ( CVector<uint8_t> ) ) );
QObject::connect ( &Channel,
SIGNAL ( DetectedCLMessage ( CVector<uint8_t>, int ) ),
this, SLOT ( OnDetectedCLMessage ( CVector<uint8_t>, int ) ) );
QObject::connect ( &Channel, SIGNAL ( ReqJittBufSize() ),
this, SLOT ( OnReqJittBufSize() ) );
QObject::connect ( &Channel, SIGNAL ( JittBufSizeChanged ( int ) ),
this, SLOT ( OnJittBufSizeChanged ( int ) ) );
QObject::connect ( &Channel, SIGNAL ( ReqChanInfo() ),
this, SLOT ( OnReqChanInfo() ) );
QObject::connect ( &Channel,
SIGNAL ( ConClientListNameMesReceived ( CVector<CChannelInfo> ) ),
SIGNAL ( ConClientListNameMesReceived ( CVector<CChannelInfo> ) ) );
QObject::connect ( &Channel,
SIGNAL ( ConClientListMesReceived ( CVector<CChannelInfo> ) ),
SIGNAL ( ConClientListMesReceived ( CVector<CChannelInfo> ) ) );
QObject::connect ( &Channel,
SIGNAL ( Disconnected() ),
SIGNAL ( Disconnected() ) );
QObject::connect ( &Channel, SIGNAL ( NewConnection() ),
this, SLOT ( OnNewConnection() ) );
QObject::connect ( &Channel,
SIGNAL ( ChatTextReceived ( QString ) ),
SIGNAL ( ChatTextReceived ( QString ) ) );
// #### COMPATIBILITY OLD VERSION, TO BE REMOVED ####
QObject::connect ( &Channel, SIGNAL ( OpusSupported() ),
this, SLOT ( OnOpusSupported() ) );
QObject::connect ( &ConnLessProtocol,
SIGNAL ( CLMessReadyForSending ( CHostAddress, CVector<uint8_t> ) ),
this, SLOT ( OnSendCLProtMessage ( CHostAddress, CVector<uint8_t> ) ) );
QObject::connect ( &ConnLessProtocol,
SIGNAL ( CLServerListReceived ( CHostAddress, CVector<CServerInfo> ) ),
SIGNAL ( CLServerListReceived ( CHostAddress, CVector<CServerInfo> ) ) );
QObject::connect ( &ConnLessProtocol,
SIGNAL ( CLPingReceived ( CHostAddress, int ) ),
this, SLOT ( OnCLPingReceived ( CHostAddress, int ) ) );
QObject::connect ( &ConnLessProtocol,
SIGNAL ( CLPingWithNumClientsReceived ( CHostAddress, int, int ) ),
this, SLOT ( OnCLPingWithNumClientsReceived ( CHostAddress, int, int ) ) );
QObject::connect ( &Sound, SIGNAL ( ReinitRequest ( int ) ),
this, SLOT ( OnSndCrdReinitRequest ( int ) ) );
}
void CClient::OnSendProtMessage ( CVector<uint8_t> vecMessage )
{
// the protocol queries me to call the function to send the message
// send it through the network
Socket.SendPacket ( vecMessage, Channel.GetAddress() );
}
void CClient::OnSendCLProtMessage ( CHostAddress InetAddr,
CVector<uint8_t> vecMessage )
{
// the protocol queries me to call the function to send the message
// send it through the network
Socket.SendPacket ( vecMessage, InetAddr );
}
void CClient::OnDetectedCLMessage ( CVector<uint8_t> vecbyData,
int iNumBytes )
{
// this is a special case: we received a connection less message but we are
// in a connection
ConnLessProtocol.ParseConnectionLessMessage ( vecbyData,
iNumBytes,
Channel.GetAddress() );
}
void CClient::OnJittBufSizeChanged ( int iNewJitBufSize )
{
// we received a jitter buffer size changed message from the server,
// only apply this value if auto jitter buffer size is enabled
if ( GetDoAutoSockBufSize() )
{
// Note: Do not use the "SetServerSockBufNumFrames" function for setting
// the new server jitter buffer size since then a message would be sent
// to the server which is incorrect.
iServerSockBufNumFrames = iNewJitBufSize;
}
}
void CClient::OnNewConnection()
{
// a new connection was successfully initiated, send infos and request
// connected clients list
Channel.SetRemoteInfo ( ChannelInfo );
// We have to send a connected clients list request since it can happen
// that we just had connected to the server and then disconnected but
// the server still thinks that we are connected (the server is still
// waiting for the channel time-out). If we now connect again, we would
// not get the list because the server does not know about a new connection.
// Same problem is with the jitter buffer message.
Channel.CreateReqConnClientsList();
CreateServerJitterBufferMessage();
}
void CClient::CreateServerJitterBufferMessage()
{
// per definition in the client: if auto jitter buffer is enabled, both,
// the client and server shall use an auto jitter buffer
if ( GetDoAutoSockBufSize() )
{
// in case auto jitter buffer size is enabled, we have to transmit a
// special value
Channel.CreateJitBufMes ( AUTO_NET_BUF_SIZE_FOR_PROTOCOL );
}
else
{
Channel.CreateJitBufMes ( GetServerSockBufNumFrames() );
}
}
void CClient::OnCLPingReceived ( CHostAddress InetAddr,
int iMs )
{
// make sure we are running and the server address is correct
if ( IsRunning() && ( InetAddr == Channel.GetAddress() ) )
{
// take care of wrap arounds (if wrapping, do not use result)
const int iCurDiff = EvaluatePingMessage ( iMs );
if ( iCurDiff >= 0 )
{
emit PingTimeReceived ( iCurDiff );
}
}
}
void CClient::OnCLPingWithNumClientsReceived ( CHostAddress InetAddr,
int iMs,
int iNumClients )
{
// take care of wrap arounds (if wrapping, do not use result)
const int iCurDiff = EvaluatePingMessage ( iMs );
if ( iCurDiff >= 0 )
{
emit CLPingTimeWithNumClientsReceived ( InetAddr,
iCurDiff,
iNumClients );
}
}
int CClient::PreparePingMessage()
{
// transmit the current precise time (in ms)
return PreciseTime.elapsed();
}
int CClient::EvaluatePingMessage ( const int iMs )
{
// calculate difference between received time in ms and current time in ms
return PreciseTime.elapsed() - iMs;
}
void CClient::SetDoAutoSockBufSize ( const bool bValue )
{
// first, set new value in the channel object
Channel.SetDoAutoSockBufSize ( bValue );
// inform the server about the change
CreateServerJitterBufferMessage();
}
bool CClient::SetServerAddr ( QString strNAddr )
{
CHostAddress HostAddress;
if ( LlconNetwUtil().ParseNetworkAddress ( strNAddr,
HostAddress ) )
{
// apply address to the channel
Channel.SetAddress ( HostAddress );
return true;
}
else
{
return false; // invalid address
}
}
void CClient::SetSndCrdPrefFrameSizeFactor ( const int iNewFactor )
{
// first check new input parameter
if ( ( iNewFactor == FRAME_SIZE_FACTOR_PREFERRED ) ||
( iNewFactor == FRAME_SIZE_FACTOR_DEFAULT ) ||
( iNewFactor == FRAME_SIZE_FACTOR_SAFE ) )
{
// init with new parameter, if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
// set new parameter
iSndCrdPrefFrameSizeFactor = iNewFactor;
// init with new block size index parameter
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
}
// #### COMPATIBILITY OLD VERSION, TO BE REMOVED ####
void CClient::OnOpusSupported()
{
if ( eAudioCompressionType != CT_OPUS )
{
SetAudoCompressiontype ( CT_OPUS );
}
// inform the GUI about the change of the network rate
emit UpstreamRateChanged();
}
// #### COMPATIBILITY OLD VERSION, TO BE REMOVED ####
void CClient::SetAudoCompressiontype ( const EAudComprType eNAudCompressionType )
{
// init with new parameter, if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
// set new parameter
eAudioCompressionType = eNAudCompressionType;
Init();
if ( bWasRunning )
{
Sound.Start();
}
}
void CClient::SetCELTHighQuality ( const bool bNCeltHighQualityFlag )
{
// init with new parameter, if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
// set new parameter
bCeltDoHighQuality = bNCeltHighQualityFlag;
Init();
if ( bWasRunning )
{
Sound.Start();
}
}
void CClient::SetUseStereo ( const bool bNUseStereo )
{
// init with new parameter, if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
// set new parameter
bUseStereo = bNUseStereo;
Init();
if ( bWasRunning )
{
Sound.Start();
}
}
QString CClient::SetSndCrdDev ( const int iNewDev )
{
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
const QString strReturn = Sound.SetDev ( iNewDev );
// init again because the sound card actual buffer size might
// be changed on new device
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
return strReturn;
}
void CClient::SetSndCrdLeftInputChannel ( const int iNewChan )
{
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
Sound.SetLeftInputChannel ( iNewChan );
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
void CClient::SetSndCrdRightInputChannel ( const int iNewChan )
{
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
Sound.SetRightInputChannel ( iNewChan );
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
void CClient::SetSndCrdLeftOutputChannel ( const int iNewChan )
{
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
Sound.SetLeftOutputChannel ( iNewChan );
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
void CClient::SetSndCrdRightOutputChannel ( const int iNewChan )
{
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
Sound.SetRightOutputChannel ( iNewChan );
Init();
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
void CClient::OnSndCrdReinitRequest ( int iSndCrdResetType )
{
// in older QT versions, enums cannot easily be used in signals without
// registering them -> workaroud: we use the int type and cast to the enum
const ESndCrdResetType eSndCrdResetType =
static_cast<ESndCrdResetType> ( iSndCrdResetType );
// if client was running then first
// stop it and restart again after new initialization
const bool bWasRunning = Sound.IsRunning();
if ( bWasRunning )
{
Sound.Stop();
}
// perform reinit request as indicated by the request type parameter
if ( eSndCrdResetType != RS_ONLY_RESTART )
{
if ( eSndCrdResetType != RS_ONLY_RESTART_AND_INIT )
{
// reinit the driver if requested
// (we use the currently selected driver)
Sound.SetDev ( Sound.GetDev() );
}
// init client object (must always be performed if the driver
// was changed)
Init();
}
if ( bWasRunning )
{
// restart client
Sound.Start();
}
}
void CClient::Start()
{
// #### COMPATIBILITY OLD VERSION, TO BE REMOVED ####
// our first attempt is always to use the old code
eAudioCompressionType = CT_CELT;
// init object
Init();
// enable channel
Channel.SetEnable ( true );
// start audio interface
Sound.Start();
}
void CClient::Stop()
{
// stop audio interface
Sound.Stop();
// disable channel
Channel.SetEnable ( false );
// wait for approx. 100 ms to make sure no audio packet is still in the
// network queue causing the channel to be reconnected right after having
// received the disconnect message (seems not to gain much, disconnect is
// still not working reliably)
QTime DieTime = QTime::currentTime().addMSecs ( 100 );
while ( QTime::currentTime() < DieTime )
{
// exclude user input events because if we use AllEvents, it happens
// that if the user initiates a connection and disconnection quickly
// (e.g. quickly pressing enter five times), the software can get into
// an unknown state
QCoreApplication::processEvents (
QEventLoop::ExcludeUserInputEvents, 100 );
}
// Send disconnect message to server (Since we disable our protocol
// receive mechanism with the next command, we do not evaluate any
// respond from the server, therefore we just hope that the message
// gets its way to the server, if not, the old behaviour time-out
// disconnects the connection anyway).
ConnLessProtocol.CreateCLDisconnection ( Channel.GetAddress() );
// reset current signal level and LEDs
SignalLevelMeter.Reset();
PostWinMessage ( MS_RESET_ALL, 0 );
}
void CClient::Init()
{
// check if possible frame size factors are supported
const int iFraSizePreffered =
FRAME_SIZE_FACTOR_PREFERRED * SYSTEM_FRAME_SIZE_SAMPLES;
bFraSiFactPrefSupported =
( Sound.Init ( iFraSizePreffered ) == iFraSizePreffered );
const int iFraSizeDefault =
FRAME_SIZE_FACTOR_DEFAULT * SYSTEM_FRAME_SIZE_SAMPLES;
bFraSiFactDefSupported =
( Sound.Init ( iFraSizeDefault ) == iFraSizeDefault );
const int iFraSizeSafe =
FRAME_SIZE_FACTOR_SAFE * SYSTEM_FRAME_SIZE_SAMPLES;
bFraSiFactSafeSupported =
( Sound.Init ( iFraSizeSafe ) == iFraSizeSafe );
// translate block size index in actual block size
const int iPrefMonoFrameSize =
iSndCrdPrefFrameSizeFactor * SYSTEM_FRAME_SIZE_SAMPLES;
// get actual sound card buffer size using preferred size
iMonoBlockSizeSam = Sound.Init ( iPrefMonoFrameSize );
// Calculate the current sound card frame size factor. In case
// the current mono block size is not a multiple of the system
// frame size, we have to use a sound card conversion buffer.
if ( ( iMonoBlockSizeSam == ( SYSTEM_FRAME_SIZE_SAMPLES * FRAME_SIZE_FACTOR_PREFERRED ) ) ||
( iMonoBlockSizeSam == ( SYSTEM_FRAME_SIZE_SAMPLES * FRAME_SIZE_FACTOR_DEFAULT ) ) ||
( iMonoBlockSizeSam == ( SYSTEM_FRAME_SIZE_SAMPLES * FRAME_SIZE_FACTOR_SAFE ) ) )
{
// regular case: one of our predefined buffer sizes is available
iSndCrdFrameSizeFactor = iMonoBlockSizeSam / SYSTEM_FRAME_SIZE_SAMPLES;
// no sound card conversion buffer required
bSndCrdConversionBufferRequired = false;
}
else
{
// An unsupported sound card buffer size is currently used -> we have
// to use a conversion buffer. Per definition we use the smallest buffer
// size as the current frame size
// store actual sound card buffer size (stereo)
iSndCardMonoBlockSizeSamConvBuff = iMonoBlockSizeSam;
const int iSndCardStereoBlockSizeSamConvBuff = 2 * iMonoBlockSizeSam;
// overwrite block size by smallest supported buffer size
iSndCrdFrameSizeFactor = FRAME_SIZE_FACTOR_PREFERRED;
iMonoBlockSizeSam =
SYSTEM_FRAME_SIZE_SAMPLES * FRAME_SIZE_FACTOR_PREFERRED;
iStereoBlockSizeSam = 2 * iMonoBlockSizeSam;
// inits for conversion buffer (the size of the conversion buffer must
// be the sum of input/output sizes which is the worst case fill level)
const int iConBufSize =
iStereoBlockSizeSam + iSndCardStereoBlockSizeSamConvBuff;
SndCrdConversionBufferIn.Init ( iConBufSize );
SndCrdConversionBufferOut.Init ( iConBufSize );
vecDataConvBuf.Init ( iStereoBlockSizeSam );
// the output conversion buffer must be filled with the inner
// block size for initialization (this is the latency which is
// introduced by the conversion buffer) to avoid buffer underruns
const CVector<int16_t> vZeros ( iStereoBlockSizeSam, 0 );
SndCrdConversionBufferOut.Put ( vZeros, vZeros.Size() );
bSndCrdConversionBufferRequired = true;
}
// calculate stereo (two channels) buffer size
iStereoBlockSizeSam = 2 * iMonoBlockSizeSam;
vecsAudioSndCrdMono.Init ( iMonoBlockSizeSam );
vecdAudioStereo.Init ( iStereoBlockSizeSam );
// init reverberation
AudioReverbL.Init ( SYSTEM_SAMPLE_RATE_HZ );
AudioReverbR.Init ( SYSTEM_SAMPLE_RATE_HZ );
// inits for CELT coding
if ( bCeltDoHighQuality )
{
if ( bUseStereo )
{
if ( eAudioCompressionType == CT_CELT )
{
iCeltNumCodedBytes = CELT_NUM_BYTES_STEREO_HIGH_QUALITY;
}
else
{
iCeltNumCodedBytes = OPUS_NUM_BYTES_STEREO_HIGH_QUALITY;
}
}
else
{
if ( eAudioCompressionType == CT_CELT )
{
iCeltNumCodedBytes = CELT_NUM_BYTES_MONO_HIGH_QUALITY;
}
else
{
iCeltNumCodedBytes = OPUS_NUM_BYTES_MONO_HIGH_QUALITY;
}
}
}
else
{
if ( bUseStereo )
{
if ( eAudioCompressionType == CT_CELT )
{
iCeltNumCodedBytes = CELT_NUM_BYTES_STEREO_NORMAL_QUALITY;
}
else
{
iCeltNumCodedBytes = OPUS_NUM_BYTES_STEREO_NORMAL_QUALITY;
}
}
else
{
if ( eAudioCompressionType == CT_CELT )
{
iCeltNumCodedBytes = CELT_NUM_BYTES_MONO_NORMAL_QUALITY;
}
else
{
iCeltNumCodedBytes = OPUS_NUM_BYTES_MONO_NORMAL_QUALITY;
}
}
}
vecCeltData.Init ( iCeltNumCodedBytes );
if ( bUseStereo )
{
opus_custom_encoder_ctl ( OpusEncoderStereo,
OPUS_SET_BITRATE (
CalcBitRateBitsPerSecFromCodedBytes (
iCeltNumCodedBytes ) ) );
}
else
{
opus_custom_encoder_ctl ( OpusEncoderMono,
OPUS_SET_BITRATE (
CalcBitRateBitsPerSecFromCodedBytes (
iCeltNumCodedBytes ) ) );
}
// inits for network and channel
vecbyNetwData.Init ( iCeltNumCodedBytes );
if ( bUseStereo )
{
vecsNetwork.Init ( iStereoBlockSizeSam );
// set the channel network properties
Channel.SetAudioStreamProperties ( eAudioCompressionType,
iCeltNumCodedBytes,
iSndCrdFrameSizeFactor,
2 );
}
else
{
vecsNetwork.Init ( iMonoBlockSizeSam );
// set the channel network properties
Channel.SetAudioStreamProperties ( eAudioCompressionType,
iCeltNumCodedBytes,
iSndCrdFrameSizeFactor,
1 );
}
// reset initialization phase flag
bIsInitializationPhase = true;
}
void CClient::AudioCallback ( CVector<int16_t>& psData, void* arg )
{
// get the pointer to the object
CClient* pMyClientObj = reinterpret_cast<CClient*> ( arg );
// process audio data
pMyClientObj->ProcessSndCrdAudioData ( psData );
}
void CClient::ProcessSndCrdAudioData ( CVector<int16_t>& vecsStereoSndCrd )
{
// check if a conversion buffer is required or not
if ( bSndCrdConversionBufferRequired )
{
// add new sound card block in conversion buffer
SndCrdConversionBufferIn.Put ( vecsStereoSndCrd, vecsStereoSndCrd.Size() );
// process all available blocks of data
while ( SndCrdConversionBufferIn.GetAvailData() >= iStereoBlockSizeSam )
{
// get one block of data for processing
SndCrdConversionBufferIn.Get ( vecDataConvBuf );
// process audio data
ProcessAudioDataIntern ( vecDataConvBuf );
SndCrdConversionBufferOut.Put ( vecDataConvBuf, vecDataConvBuf.Size() );
}
// get processed sound card block out of the conversion buffer
SndCrdConversionBufferOut.Get ( vecsStereoSndCrd );
}
else
{
// regular case: no conversion buffer required
// process audio data
ProcessAudioDataIntern ( vecsStereoSndCrd );
}
}
void CClient::ProcessAudioDataIntern ( CVector<int16_t>& vecsStereoSndCrd )
{
int i, j;
// Transmit signal ---------------------------------------------------------
// update stereo signal level meter
SignalLevelMeter.Update ( vecsStereoSndCrd );
// convert data from short to double
for ( i = 0; i < iStereoBlockSizeSam; i++ )
{
vecdAudioStereo[i] = static_cast<double> ( vecsStereoSndCrd[i] );
}
// add reverberation effect if activated
if ( iReverbLevel != 0 )
{
// calculate attenuation amplification factor
const double dRevLev =
static_cast<double> ( iReverbLevel ) / AUD_REVERB_MAX / 2;
if ( bUseStereo )
{
// for stereo always apply reverberation effect on both channels
for ( i = 0; i < iStereoBlockSizeSam; i += 2 )
{
// left channel
vecdAudioStereo[i] +=
dRevLev * AudioReverbL.ProcessSample ( vecdAudioStereo[i] );
// right channel
vecdAudioStereo[i + 1] +=
dRevLev * AudioReverbR.ProcessSample ( vecdAudioStereo[i + 1] );
}
}
else
{
if ( bReverbOnLeftChan )
{
for ( i = 0; i < iStereoBlockSizeSam; i += 2 )
{
// left channel
vecdAudioStereo[i] +=
dRevLev * AudioReverbL.ProcessSample ( vecdAudioStereo[i] );
}
}
else
{
for ( i = 1; i < iStereoBlockSizeSam; i += 2 )
{
// right channel
vecdAudioStereo[i] +=
dRevLev * AudioReverbR.ProcessSample ( vecdAudioStereo[i] );
}
}
}
}
// mix both signals depending on the fading setting, convert
// from double to short
if ( iAudioInFader == AUD_FADER_IN_MIDDLE )
{
if ( bUseStereo )
{
// perform type conversion
for ( i = 0; i < iStereoBlockSizeSam; i++ )
{
vecsNetwork[i] = Double2Short ( vecdAudioStereo[i] );
}
}
else
{
// mix channels together
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
vecsNetwork[i] =
Double2Short ( ( vecdAudioStereo[j] +
vecdAudioStereo[j + 1] ) / 2 );
}
}
}
else
{
if ( bUseStereo )
{
// stereo
const double dAttFactStereo = static_cast<double> (
AUD_FADER_IN_MIDDLE - abs ( AUD_FADER_IN_MIDDLE - iAudioInFader ) ) /
AUD_FADER_IN_MIDDLE;
if ( iAudioInFader > AUD_FADER_IN_MIDDLE )
{
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
// attenuation on right channel
vecsNetwork[j] = Double2Short (
vecdAudioStereo[j] );
vecsNetwork[j + 1] = Double2Short (
dAttFactStereo * vecdAudioStereo[j + 1] );
}
}
else
{
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
// attenuation on left channel
vecsNetwork[j] = Double2Short (
dAttFactStereo * vecdAudioStereo[j] );
vecsNetwork[j + 1] = Double2Short (
vecdAudioStereo[j + 1] );
}
}
}
else
{
// mono
// make sure that in the middle position the two channels are
// amplified by 1/2, if the pan is set to one channel, this
// channel should have an amplification of 1
const double dAttFactMono = static_cast<double> (
AUD_FADER_IN_MIDDLE - abs ( AUD_FADER_IN_MIDDLE - iAudioInFader ) ) /
AUD_FADER_IN_MIDDLE / 2;
const double dAmplFactMono = 0.5 + static_cast<double> (
abs ( AUD_FADER_IN_MIDDLE - iAudioInFader ) ) /
AUD_FADER_IN_MIDDLE / 2;
if ( iAudioInFader > AUD_FADER_IN_MIDDLE )
{
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
// attenuation on right channel
vecsNetwork[i] = Double2Short (
dAmplFactMono * vecdAudioStereo[j] +
dAttFactMono * vecdAudioStereo[j + 1] );
}
}
else
{
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
// attenuation on left channel
vecsNetwork[i] = Double2Short (
dAmplFactMono * vecdAudioStereo[j + 1] +
dAttFactMono * vecdAudioStereo[j] );
}
}
}
}
for ( i = 0; i < iSndCrdFrameSizeFactor; i++ )
{
if ( bUseStereo )
{
// encode current audio frame
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_encode ( CeltEncoderStereo,
&vecsNetwork[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES],
NULL,
&vecCeltData[0],
iCeltNumCodedBytes );
}
else
{
opus_custom_encode ( OpusEncoderStereo,
&vecsNetwork[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES,
&vecCeltData[0],
iCeltNumCodedBytes );
}
}
else
{
// encode current audio frame
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_encode ( CeltEncoderMono,
&vecsNetwork[i * SYSTEM_FRAME_SIZE_SAMPLES],
NULL,
&vecCeltData[0],
iCeltNumCodedBytes );
}
else
{
opus_custom_encode ( OpusEncoderMono,
&vecsNetwork[i * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES,
&vecCeltData[0],
iCeltNumCodedBytes );
}
}
// send coded audio through the network
Socket.SendPacket ( Channel.PrepSendPacket ( vecCeltData ),
Channel.GetAddress() );
}
// Receive signal ----------------------------------------------------------
for ( i = 0; i < iSndCrdFrameSizeFactor; i++ )
{
// receive a new block
const bool bReceiveDataOk =
( Channel.GetData ( vecbyNetwData ) == GS_BUFFER_OK );
if ( bReceiveDataOk )
{
PostWinMessage ( MS_JIT_BUF_GET, MUL_COL_LED_GREEN );
}
else
{
PostWinMessage ( MS_JIT_BUF_GET, MUL_COL_LED_RED );
}
// CELT decoding
if ( bReceiveDataOk )
{
// on any valid received packet, we clear the initialization phase
// flag
bIsInitializationPhase = false;
if ( bUseStereo )
{
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_decode ( CeltDecoderStereo,
&vecbyNetwData[0],
iCeltNumCodedBytes,
&vecsStereoSndCrd[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES] );
}
else
{
opus_custom_decode ( OpusDecoderStereo,
&vecbyNetwData[0],
iCeltNumCodedBytes,
&vecsStereoSndCrd[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES );
}
}
else
{
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_decode ( CeltDecoderMono,
&vecbyNetwData[0],
iCeltNumCodedBytes,
&vecsAudioSndCrdMono[i * SYSTEM_FRAME_SIZE_SAMPLES] );
}
else
{
opus_custom_decode ( OpusDecoderMono,
&vecbyNetwData[0],
iCeltNumCodedBytes,
&vecsAudioSndCrdMono[i * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES );
}
}
}
else
{
// lost packet
if ( bUseStereo )
{
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_decode ( CeltDecoderStereo,
NULL,
0,
&vecsStereoSndCrd[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES] );
}
else
{
opus_custom_decode ( OpusDecoderStereo,
NULL,
iCeltNumCodedBytes,
&vecsStereoSndCrd[i * 2 * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES );
}
}
else
{
if ( eAudioCompressionType == CT_CELT )
{
cc6_celt_decode ( CeltDecoderMono,
NULL,
0,
&vecsAudioSndCrdMono[i * SYSTEM_FRAME_SIZE_SAMPLES] );
}
else
{
opus_custom_decode ( OpusDecoderMono,
NULL,
iCeltNumCodedBytes,
&vecsAudioSndCrdMono[i * SYSTEM_FRAME_SIZE_SAMPLES],
SYSTEM_FRAME_SIZE_SAMPLES );
}
}
}
}
/*
// TEST
// fid=fopen('v.dat','r');x=fread(fid,'int16');fclose(fid);
static FILE* pFileDelay = fopen("c:\\temp\\test2.dat", "wb");
short sData[2];
for (i = 0; i < iMonoBlockSizeSam; i++)
{
sData[0] = (short) vecsAudioSndCrdMono[i];
fwrite(&sData, size_t(2), size_t(1), pFileDelay);
}
fflush(pFileDelay);
*/
// check if channel is connected and if we do not have the initialization
// phase
if ( Channel.IsConnected() && ( !bIsInitializationPhase ) )
{
if ( !bUseStereo )
{
// copy mono data in stereo sound card buffer
for ( i = 0, j = 0; i < iMonoBlockSizeSam; i++, j += 2 )
{
vecsStereoSndCrd[j] = vecsStereoSndCrd[j + 1] =
vecsAudioSndCrdMono[i];
}
}
}
else
{
// if not connected, clear data
vecsStereoSndCrd.Reset ( 0 );
}
// update socket buffer size
Channel.UpdateSocketBufferSize();
}
int CClient::EstimatedOverallDelay ( const int iPingTimeMs )
{
/*
For estimating the overall delay, use the following assumptions:
- the mean delay of a cyclic buffer is half the buffer size (since
for the average it is assumed that the buffer is half filled)
- consider the jitter buffer on the server side, too
*/
// the buffer sizes at client and server divided by 2 (half the buffer
// for the delay) is the total socket buffer size
const double dTotalJitterBufferDelayMs = SYSTEM_BLOCK_DURATION_MS_FLOAT *
static_cast<double> ( GetSockBufNumFrames() +
GetServerSockBufNumFrames() ) / 2;
// we assume that we have two period sizes for the input and one for the
// output, therefore we have "3 *" instead of "2 *" (for input and output)
// the actual sound card buffer size, also consider delay introduced by
// sound card conversion buffer by using
// "GetSndCrdConvBufAdditionalDelayMonoBlSize"
const double dTotalSoundCardDelayMs =
( 3 * GetSndCrdActualMonoBlSize() +
GetSndCrdConvBufAdditionalDelayMonoBlSize() ) *
1000 / SYSTEM_SAMPLE_RATE_HZ;
// network packets are of the same size as the audio packets per definition
// if no sound card conversion buffer is used
const double dDelayToFillNetworkPacketsMs =
GetSystemMonoBlSize() * 1000 / SYSTEM_SAMPLE_RATE_HZ;
// CELT additional delay at small frame sizes is half a frame size
const double dAdditionalAudioCodecDelayMs =
SYSTEM_BLOCK_DURATION_MS_FLOAT / 2;
const double dTotalBufferDelayMs =
dDelayToFillNetworkPacketsMs +
dTotalJitterBufferDelayMs +
dTotalSoundCardDelayMs +
dAdditionalAudioCodecDelayMs;
return LlconMath::round ( dTotalBufferDelayMs + iPingTimeMs );
}