/******************************************************************************\ * Copyright (c) 2004-2010 * * Author(s): * Volker Fischer * * Note: We are assuming here that put and get operations are secured by a mutex * and accessing does not occur at the same time. * ****************************************************************************** * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * \******************************************************************************/ #include "buffer.h" /* Implementation *************************************************************/ void CNetBuf::Init ( const int iNewBlockSize, const int iNewNumBlocks ) { // total size -> size of one block times number of blocks iBlockSize = iNewBlockSize; iMemSize = iNewBlockSize * iNewNumBlocks; // allocate and clear memory for actual data buffer vecbyMemory.Init ( iMemSize ); // use the "get" flag to make sure the buffer is cleared Clear ( CT_GET ); // init statistic ErrorRateStatistic.Init ( MAX_STATISTIC_COUNT ); } bool CNetBuf::Put ( const CVector& vecbyData, const int iInSize ) { bool bPutOK = true; // Check if there is not enough space available -> correct if ( GetAvailSpace() < iInSize ) { // not enough space in buffer for put operation, correct buffer to // prepare for new data Clear ( CT_PUT ); bPutOK = false; // return error flag // check for special case: buffer memory is not sufficient if ( iInSize > iMemSize ) { // do nothing here, just return error code return bPutOK; } } // copy new data in internal buffer int iCurPos = 0; if ( iPutPos + iInSize > iMemSize ) { // remaining space size for second block const int iRemSpace = iPutPos + iInSize - iMemSize; // data must be written in two steps because of wrap around while ( iPutPos < iMemSize ) { vecbyMemory[iPutPos++] = vecbyData[iCurPos++]; } for ( iPutPos = 0; iPutPos < iRemSpace; iPutPos++ ) { vecbyMemory[iPutPos] = vecbyData[iCurPos++]; } } else { // data can be written in one step const int iEnd = iPutPos + iInSize; while ( iPutPos < iEnd ) { vecbyMemory[iPutPos++] = vecbyData[iCurPos++]; } } // set buffer state flag if ( iPutPos == iGetPos ) { eBufState = CNetBuf::BS_FULL; } else { eBufState = CNetBuf::BS_OK; } // update statistic ErrorRateStatistic.Update ( !bPutOK ); return bPutOK; } bool CNetBuf::Get ( CVector& vecbyData ) { bool bGetOK = true; // init return value // get size of data to be get from the buffer const int iInSize = vecbyData.Size(); // check size if ( ( iInSize == 0 ) || ( iInSize != iBlockSize ) ) { return false; } // check for invalid data in buffer if ( iNumInvalidElements > 0 ) { // decrease number of invalid elements by the queried number (input // size) iNumInvalidElements -= iInSize; bGetOK = false; // return error flag } // Check if there is not enough data available -> correct if ( GetAvailData() < iInSize ) { // not enough data in buffer for get operation, correct buffer to // prepare for getting data Clear ( CT_GET ); bGetOK = false; // return error flag // check for special case: buffer memory is not sufficient if ( iInSize > iMemSize ) { // do nothing here, just return error code return bGetOK; } } // copy data from internal buffer in output buffer int iCurPos = 0; if ( iGetPos + iInSize > iMemSize ) { // remaining data size for second block const int iRemData = iGetPos + iInSize - iMemSize; // data must be read in two steps because of wrap around while ( iGetPos < iMemSize ) { vecbyData[iCurPos++] = vecbyMemory[iGetPos++]; } for ( iGetPos = 0; iGetPos < iRemData; iGetPos++ ) { vecbyData[iCurPos++] = vecbyMemory[iGetPos]; } } else { // data can be read in one step const int iEnd = iGetPos + iInSize; while ( iGetPos < iEnd ) { vecbyData[iCurPos++] = vecbyMemory[iGetPos++]; } } // set buffer state flag if ( iPutPos == iGetPos ) { eBufState = CNetBuf::BS_EMPTY; } else { eBufState = CNetBuf::BS_OK; } // update statistic ErrorRateStatistic.Update ( !bGetOK ); return bGetOK; } int CNetBuf::GetAvailSpace() const { // calculate available space in buffer int iAvSpace = iGetPos - iPutPos; // check for special case and wrap around if ( iAvSpace < 0 ) { iAvSpace += iMemSize; // wrap around } else { if ( ( iAvSpace == 0 ) && ( eBufState == BS_EMPTY ) ) { iAvSpace = iMemSize; } } return iAvSpace; } int CNetBuf::GetAvailData() const { // calculate available data in buffer int iAvData = iPutPos - iGetPos; // check for special case and wrap around if ( iAvData < 0 ) { iAvData += iMemSize; // wrap around } else { if ( ( iAvData == 0 ) && ( eBufState == BS_FULL ) ) { iAvData = iMemSize; } } return iAvData; } void CNetBuf::Clear ( const EClearType eClearType ) { // Define the number of blocks bound for the "random offset" (1) algorithm. // If we are above the bound, we use the "middle of buffer" (2) algorithm. // // Test results (with different jitter buffer sizes), given is the error // probability of jitter buffer (probability of corrections in the buffer): // kX, 128 samples, WLAN: // 2: (1) 5 %, (2) 12.3 % // 3: (1) 18.3 %, (2) 17.1 % // 5: (1) 0.9 %, (2) 0.8 % // kX, 128 samples, localhost: // 2: (1) 2.5 %, (2) 13 % // 3: (1) 0.9 %, (2) 1.1 % // 5: (1) 0.7 %, (2) 0.6 % // Behringer, 128 samples, WLAN: // 2: (1) 5.8 %, (2) 9.4 % // 3: (1) 0.9 %, (2) 0.8 % // 5: (1) 0.4 %, (2) 0.3 % // Behringer, 128 samples, localhost: // 2: (1) 1 %, (2) 9.8 % // 3: (1) 0.57 %, (2) 0.6 % // 5: (1) 0.6 %, (2) 0.56 % // kX, 256 samples, WLAN: // 3: (1) 24.2 %, (2) 18.4 % // 4: (1) 1.5 %, (2) 2.5 % // 5: (1) 1 %, (2) 1 % // ASIO4All, 256 samples, WLAN: // 3: (1) 14.9 %, (2) 11.9 % // 4: (1) 1.5 %, (2) 7 % // 5: (1) 1.2 %, (2) 1.3 % const int iNumBlocksBoundInclForRandom = 4; // by extensive testing: 4 int iNewFillLevel = 0; if ( iBlockSize != 0 ) { const int iNumBlocks = iMemSize / iBlockSize; if ( iNumBlocks <= iNumBlocksBoundInclForRandom ) // just for small buffers { // Random position algorithm. // overwrite fill level with random value, the range // is 0 to (iMemSize - iBlockSize) iNewFillLevel = static_cast ( static_cast ( rand() ) * iNumBlocks / RAND_MAX ) * iBlockSize; } else { // Middle of buffer algorithm. // with the following operation we set the fill level to a block // boundary (one block below the middle of the buffer in case of odd // number of blocks, e.g.: // [buffer size]: [get pos] // 1: 0 / 2: 0 / 3: 1 / 4: 1 / 5: 2 ...) iNewFillLevel = ( ( ( iMemSize - iBlockSize) / 2 ) / iBlockSize ) * iBlockSize; } } // different behaviour for get and put corrections if ( eClearType == CT_GET ) { // clear buffer since we had a buffer underrun vecbyMemory.Reset ( 0 ); // reset buffer pointers so that they are at maximum distance after // the get operation (assign new fill level value to the get pointer) iPutPos = 0; iGetPos = iNewFillLevel; // The buffer was cleared, the next time blocks are read from the // buffer, these are invalid ones. Calculate the number of invalid // elements iNumInvalidElements = iMemSize - iNewFillLevel; // check for special case if ( iPutPos == iGetPos ) { eBufState = CNetBuf::BS_FULL; } else { eBufState = CNetBuf::BS_OK; } } else { // in case of "put" correction, do not delete old data but only shift // the pointers iPutPos = iNewFillLevel; // adjust put pointer relative to current get pointer, take care of // wrap around iPutPos += iGetPos; if ( iPutPos > iMemSize ) { iPutPos -= iMemSize; } // in case of put correction, no invalid blocks are inserted iNumInvalidElements = 0; // check for special case if ( iPutPos == iGetPos ) { eBufState = CNetBuf::BS_EMPTY; } else { eBufState = CNetBuf::BS_OK; } } }