/******************************************************************************\ * Copyright (c) 2004-2018 * * Author(s): * Volker Fischer * * Note: We are assuming here that put and get operations are secured by a mutex * and accessing does not occur at the same time. * ****************************************************************************** * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License as published by the Free Software * Foundation; either version 2 of the License, or (at your option) any later * version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * \******************************************************************************/ #include "buffer.h" /* Network buffer implementation **********************************************/ void CNetBuf::Init ( const int iNewBlockSize, const int iNewNumBlocks, const bool bPreserve ) { // store block size value iBlockSize = iNewBlockSize; // total size -> size of one block times the number of blocks CBufferBase::Init ( iNewBlockSize * iNewNumBlocks, bPreserve ); // clear buffer if not preserved if ( !bPreserve ) { Clear(); } } bool CNetBuf::Put ( const CVector& vecbyData, const int iInSize ) { bool bPutOK = true; // check if there is not enough space available if ( GetAvailSpace() < iInSize ) { return false; } // copy new data in internal buffer (implemented in base class) CBufferBase::Put ( vecbyData, iInSize ); return bPutOK; } bool CNetBuf::Get ( CVector& vecbyData, const int iOutSize ) { bool bGetOK = true; // init return value // check size if ( ( iOutSize == 0 ) || ( iOutSize != iBlockSize ) ) { return false; } // check if there is not enough data available if ( GetAvailData() < iOutSize ) { return false; } // copy data from internal buffer in output buffer (implemented in base // class) CBufferBase::Get ( vecbyData, iOutSize ); return bGetOK; } /* Network buffer with statistic calculations implementation ******************/ CNetBufWithStats::CNetBufWithStats() : CNetBuf ( false ) // base class init: no simulation mode { // Define the sizes of the simulation buffers, // must be NUM_STAT_SIMULATION_BUFFERS elements! // Avoid the buffer length 1 because we do not have a solution for a // sample rate offset correction. Caused by the jitter we usually get bad // performance with just one buffer. viBufSizesForSim[0] = 2; viBufSizesForSim[1] = 3; viBufSizesForSim[2] = 4; viBufSizesForSim[3] = 5; viBufSizesForSim[4] = 6; viBufSizesForSim[5] = 7; viBufSizesForSim[6] = 8; viBufSizesForSim[7] = 9; viBufSizesForSim[8] = 10; viBufSizesForSim[9] = 11; // set all simulation buffers in simulation mode for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { SimulationBuffer[i].SetIsSimulation ( true ); } } void CNetBufWithStats::GetErrorRates ( CVector& vecErrRates, double& dLimit, double& dMaxUpLimit ) { // get all the averages of the error statistic vecErrRates.Init ( NUM_STAT_SIMULATION_BUFFERS ); for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { vecErrRates[i] = ErrorRateStatistic[i].GetAverage(); } // get the limits for the decisions dLimit = ERROR_RATE_BOUND; dMaxUpLimit = UP_MAX_ERROR_BOUND; } void CNetBufWithStats::Init ( const int iNewBlockSize, const int iNewNumBlocks, const bool bPreserve ) { // call base class Init CNetBuf::Init ( iNewBlockSize, iNewNumBlocks, bPreserve ); // inits for statistics calculation if ( !bPreserve ) { for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { // init simulation buffers with the correct size SimulationBuffer[i].Init ( iNewBlockSize, viBufSizesForSim[i] ); // init statistics ErrorRateStatistic[i].Init ( MAX_STATISTIC_COUNT, true ); } // reset the initialization counter which controls the initialization // phase length ResetInitCounter(); // init auto buffer setting with a meaningful value, also init the // IIR parameter with this value iCurAutoBufferSizeSetting = 6; dCurIIRFilterResult = iCurAutoBufferSizeSetting; iCurDecidedResult = iCurAutoBufferSizeSetting; } } void CNetBufWithStats::ResetInitCounter() { // start initialization phase of IIR filtering, use a quarter the size // of the error rate statistic buffers which should be ok for a good // initialization value (initialization phase should be as short as // possible) iInitCounter = MAX_STATISTIC_COUNT / 4; } bool CNetBufWithStats::Put ( const CVector& vecbyData, const int iInSize ) { // call base class Put const bool bPutOK = CNetBuf::Put ( vecbyData, iInSize ); // update statistics calculations for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { ErrorRateStatistic[i].Update ( !SimulationBuffer[i].Put ( vecbyData, iInSize ) ); } return bPutOK; } bool CNetBufWithStats::Get ( CVector& vecbyData, const int iOutSize ) { // call base class Get const bool bGetOK = CNetBuf::Get ( vecbyData, iOutSize ); // update statistics calculations for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { ErrorRateStatistic[i].Update ( !SimulationBuffer[i].Get ( vecbyData, iOutSize ) ); } // update auto setting UpdateAutoSetting(); return bGetOK; } void CNetBufWithStats::UpdateAutoSetting() { int iCurDecision = 0; // dummy initialization int iCurMaxUpDecision = 0; // dummy initialization bool bDecisionFound; // Get regular error rate decision ----------------------------------------- // Use a specified error bound to identify the best buffer size for the // current network situation. Start with the smallest buffer and // test for the error rate until the rate is below the bound. bDecisionFound = false; for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS - 1; i++ ) { if ( ( !bDecisionFound ) && ( ErrorRateStatistic[i].GetAverage() <= ERROR_RATE_BOUND ) ) { iCurDecision = viBufSizesForSim[i]; bDecisionFound = true; } } if ( !bDecisionFound ) { // in case no buffer is below bound, use largest buffer size iCurDecision = viBufSizesForSim[NUM_STAT_SIMULATION_BUFFERS - 1]; } // Get maximum upper error rate decision ----------------------------------- // Use a specified error bound to identify the maximum upper error rate // to identify if we have a too low buffer setting which gives a very // bad performance constantly. Start with the smallest buffer and // test for the error rate until the rate is below the bound. bDecisionFound = false; for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS - 1; i++ ) { if ( ( !bDecisionFound ) && ( ErrorRateStatistic[i].GetAverage() <= UP_MAX_ERROR_BOUND ) ) { iCurMaxUpDecision = viBufSizesForSim[i]; bDecisionFound = true; } } if ( !bDecisionFound ) { // in case no buffer is below bound, use largest buffer size iCurMaxUpDecision = viBufSizesForSim[NUM_STAT_SIMULATION_BUFFERS - 1]; // This is a worst case, something very bad had happened. Hopefully // this was just temporary so that we initiate a new initialzation // phase to get quickly back to normal buffer sizes (hopefully). ResetInitCounter(); } // Post calculation (filtering) -------------------------------------------- // Define different weigths for up and down direction. Up direction // filtering shall be slower than for down direction since we assume // that the lower value is the actual value which can be used for // the current network condition. If the current error rate estimation // is higher, it may be a temporary problem which should not change // the current jitter buffer size significantly. // For the initialization phase, use lower weight values to get faster // adaptation. // Note that the following definitions of the weigh constants assume a block // size of 128 samples at a sampling rate of 48 kHz. double dWeightUp = 0.999995; double dWeightDown = 0.9999; const double dHysteresisValue = 0.1; bool bUseFastAdaptation = false; // check for initialization phase if ( iInitCounter > 0 ) { // decrease init counter iInitCounter--; // use the fast adaptation bUseFastAdaptation = true; } // if the current detected buffer setting is below the maximum upper bound // decision, then we enable a booster to go up to the minimum required // number of buffer blocks (i.e. we use weights for fast adaptation) if ( iCurAutoBufferSizeSetting < iCurMaxUpDecision ) { bUseFastAdaptation = true; } if ( bUseFastAdaptation ) { // overwrite weigth values with lower values dWeightUp = 0.9995; dWeightDown = 0.999; } // apply non-linear IIR filter MathUtils().UpDownIIR1 ( dCurIIRFilterResult, static_cast ( iCurDecision ), dWeightUp, dWeightDown ); /* // TEST store important detection parameters in file for debugging static FILE* pFile = fopen ( "test.dat", "w" ); static int icnt = 0; if ( icnt == 50 ) { fprintf ( pFile, "%d %e\n", iCurDecision, dCurIIRFilterResult ); fflush ( pFile ); icnt = 0; } else { icnt++; } */ // apply a hysteresis iCurAutoBufferSizeSetting = MathUtils().DecideWithHysteresis ( dCurIIRFilterResult, iCurDecidedResult, dHysteresisValue ); // Initialization phase check and correction ------------------------------- // sometimes in the very first period after a connection we get a bad error // rate result -> delete this from the initialization phase if ( iInitCounter == MAX_STATISTIC_COUNT / 8 ) { // check error rate of the largest buffer as the indicator if ( ErrorRateStatistic[NUM_STAT_SIMULATION_BUFFERS - 1]. GetAverage() > ERROR_RATE_BOUND ) { for ( int i = 0; i < NUM_STAT_SIMULATION_BUFFERS; i++ ) { ErrorRateStatistic[i].Reset(); } } } }