use larger buffers for error rate estimation

This commit is contained in:
Volker Fischer 2011-06-11 18:47:48 +00:00
parent 9fbe334d8a
commit a133156c0b

View file

@ -1,480 +1,475 @@
/******************************************************************************\
* Copyright (c) 2004-2011
*
* Author(s):
* Volker Fischer
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#if !defined ( BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_ )
#define BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_
#include "util.h"
#include "global.h"
/* Definitions ****************************************************************/
// each regular buffer access lead to a count for put and get, assuming 2.33 ms
// blocks we have 30 s / 2.33 ms * 2 = 25714
//#define MAX_STATISTIC_COUNT 25714
// TEST
// 7 / 0.00266 * 2 = 5263.1579
#define MAX_STATISTIC_COUNT 3759
// number of simulation network jitter buffers for evaluating the statistic
#define NUM_STAT_SIMULATION_BUFFERS 13
/* Classes ********************************************************************/
// Buffer base class -----------------------------------------------------------
template<class TData> class CBufferBase
{
public:
CBufferBase ( const bool bNIsSim = false ) :
bIsSimulation ( bNIsSim ), bIsInitialized ( false ) {}
void SetIsSimulation ( const bool bNIsSim ) { bIsSimulation = bNIsSim; }
virtual void Init ( const int iNewMemSize,
const bool bPreserve = false )
{
// in simulation mode the size is not changed during operation -> we do
// not have to implement special code for this case
// only enter the "preserve" branch, if object was already initialized
if ( bPreserve && ( !bIsSimulation ) && bIsInitialized )
{
// copy old data in new vector using get pointer as zero per
// definition
int iCurPos;
// copy current data in temporary vector
CVector<TData> vecTempMemory ( vecMemory );
// resize actual buffer memory
vecMemory.Init ( iNewMemSize );
// get maximum number of data to be copied
int iCopyLen = GetAvailData();
if ( iCopyLen > iNewMemSize )
{
iCopyLen = iNewMemSize;
}
// set correct buffer state
if ( iCopyLen >= iNewMemSize )
{
eBufState = CBufferBase<TData>::BS_FULL;
}
else
{
if ( iCopyLen == 0 )
{
eBufState = CBufferBase<TData>::BS_EMPTY;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
}
if ( iGetPos < iPutPos )
{
// "get" position is before "put" position -> no wrap around
for ( iCurPos = 0; iCurPos < iCopyLen; iCurPos++ )
{
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
}
// update put pointer
if ( eBufState == CBufferBase<TData>::BS_FULL )
{
iPutPos = 0;
}
else
{
iPutPos -= iGetPos;
}
}
else
{
// "put" position is before "get" position -> wrap around
bool bEnoughSpaceForSecondPart = true;
int iFirstPartLen = iMemSize - iGetPos;
// check that first copy length is not larger then new memory
if ( iFirstPartLen > iCopyLen )
{
iFirstPartLen = iCopyLen;
bEnoughSpaceForSecondPart = false;
}
for ( iCurPos = 0; iCurPos < iFirstPartLen; iCurPos++ )
{
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
}
if ( bEnoughSpaceForSecondPart )
{
// calculate remaining copy length
const int iRemainingCopyLen = iCopyLen - iFirstPartLen;
// perform copying of second part
for ( iCurPos = 0; iCurPos < iRemainingCopyLen; iCurPos++ )
{
vecMemory[iCurPos + iFirstPartLen] =
vecTempMemory[iCurPos];
}
}
// update put pointer
if ( eBufState == CBufferBase<TData>::BS_FULL )
{
iPutPos = 0;
}
else
{
iPutPos += iFirstPartLen;
}
}
// update get position -> zero per definition
iGetPos = 0;
}
else
{
// allocate memory for actual data buffer
if ( !bIsSimulation )
{
vecMemory.Init ( iNewMemSize );
}
// init buffer pointers and buffer state (empty buffer)
iGetPos = 0;
iPutPos = 0;
eBufState = CBufferBase<TData>::BS_EMPTY;
}
// store total memory size value
iMemSize = iNewMemSize;
// set initialized flag
bIsInitialized = true;
}
virtual bool Put ( const CVector<TData>& vecData,
const int iInSize )
{
if ( bIsSimulation )
{
// in this simulation only the buffer pointers and the buffer state
// is updated, no actual data is transferred
iPutPos += iInSize;
if ( iPutPos >= iMemSize )
{
iPutPos -= iMemSize;
}
}
else
{
// copy new data in internal buffer
int iCurPos = 0;
if ( iPutPos + iInSize > iMemSize )
{
// remaining space size for second block
const int iRemSpace = iPutPos + iInSize - iMemSize;
// data must be written in two steps because of wrap around
while ( iPutPos < iMemSize )
{
vecMemory[iPutPos++] = vecData[iCurPos++];
}
for ( iPutPos = 0; iPutPos < iRemSpace; iPutPos++ )
{
vecMemory[iPutPos] = vecData[iCurPos++];
}
}
else
{
// data can be written in one step
const int iEnd = iPutPos + iInSize;
while ( iPutPos < iEnd )
{
vecMemory[iPutPos++] = vecData[iCurPos++];
}
}
}
// set buffer state flag
if ( iPutPos == iGetPos )
{
eBufState = CBufferBase<TData>::BS_FULL;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
return true; // no error check in base class, alyways return ok
}
virtual bool Get ( CVector<TData>& vecData )
{
// get size of data to be get from the buffer
const int iInSize = vecData.Size();
if ( bIsSimulation )
{
// in this simulation only the buffer pointers and the buffer state
// is updated, no actual data is transferred
iGetPos += iInSize;
if ( iGetPos >= iMemSize )
{
iGetPos -= iMemSize;
}
}
else
{
// copy data from internal buffer in output buffer
int iCurPos = 0;
if ( iGetPos + iInSize > iMemSize )
{
// remaining data size for second block
const int iRemData = iGetPos + iInSize - iMemSize;
// data must be read in two steps because of wrap around
while ( iGetPos < iMemSize )
{
vecData[iCurPos++] = vecMemory[iGetPos++];
}
for ( iGetPos = 0; iGetPos < iRemData; iGetPos++ )
{
vecData[iCurPos++] = vecMemory[iGetPos];
}
}
else
{
// data can be read in one step
const int iEnd = iGetPos + iInSize;
while ( iGetPos < iEnd )
{
vecData[iCurPos++] = vecMemory[iGetPos++];
}
}
}
// set buffer state flag
if ( iPutPos == iGetPos )
{
eBufState = CBufferBase<TData>::BS_EMPTY;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
return true; // no error check in base class, alyways return ok
}
virtual int GetAvailSpace() const
{
// calculate available space in buffer
int iAvSpace = iGetPos - iPutPos;
// check for special case and wrap around
if ( iAvSpace < 0 )
{
iAvSpace += iMemSize; // wrap around
}
else
{
if ( ( iAvSpace == 0 ) && ( eBufState == BS_EMPTY ) )
{
iAvSpace = iMemSize;
}
}
return iAvSpace;
}
virtual int GetAvailData() const
{
// calculate available data in buffer
int iAvData = iPutPos - iGetPos;
// check for special case and wrap around
if ( iAvData < 0 )
{
iAvData += iMemSize; // wrap around
}
else
{
if ( ( iAvData == 0 ) && ( eBufState == BS_FULL ) )
{
iAvData = iMemSize;
}
}
return iAvData;
}
protected:
enum EBufState { BS_OK, BS_FULL, BS_EMPTY };
enum EClearType { CT_PUT, CT_GET };
virtual void Clear ( const EClearType eClearType )
{
// clear memory
if ( !bIsSimulation )
{
vecMemory.Reset ( 0 );
}
// init buffer pointers and buffer state (empty buffer)
iGetPos = 0;
iPutPos = 0;
eBufState = CBufferBase<TData>::BS_EMPTY;
}
CVector<TData> vecMemory;
int iMemSize;
int iGetPos;
int iPutPos;
EBufState eBufState;
bool bIsSimulation;
bool bIsInitialized;
};
// Network buffer (jitter buffer) ----------------------------------------------
class CNetBuf : public CBufferBase<uint8_t>
{
public:
CNetBuf ( const bool bNewIsSim = false ) :
CBufferBase<uint8_t> ( bNewIsSim ) {}
virtual void Init ( const int iNewBlockSize,
const int iNewNumBlocks,
const bool bPreserve = false );
int GetSize() { return iMemSize / iBlockSize; }
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
virtual bool Get ( CVector<uint8_t>& vecbyData );
protected:
virtual void Clear ( const EClearType eClearType );
int iBlockSize;
int iNumInvalidElements;
};
// Network buffer (jitter buffer) with statistic calculations ------------------
class CNetBufWithStats : public CNetBuf
{
public:
CNetBufWithStats();
virtual void Init ( const int iNewBlockSize,
const int iNewNumBlocks,
const bool bPreserve = false );
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
virtual bool Get ( CVector<uint8_t>& vecbyData );
// TEST
void StoreAllSimAverages();
int GetAutoSetting();
protected:
// statistic (do not use the vector class since the classes do not have
// appropriate copy constructor/operator)
CErrorRate ErrorRateStatistic[NUM_STAT_SIMULATION_BUFFERS];
CNetBuf SimulationBuffer[NUM_STAT_SIMULATION_BUFFERS];
int viBufSizesForSim[NUM_STAT_SIMULATION_BUFFERS];
};
// Conversion buffer (very simple buffer) --------------------------------------
// For this very simple buffer no wrap around mechanism is implemented. We
// assume here, that the applied buffers are an integer fraction of the total
// buffer size.
template<class TData> class CConvBuf
{
public:
CConvBuf() { Init ( 0 ); }
void Init ( const int iNewMemSize )
{
// set memory size
iMemSize = iNewMemSize;
// allocate and clear memory for actual data buffer
vecsMemory.Init ( iMemSize );
iPutPos = 0;
}
int GetSize() const { return iMemSize; }
bool Put ( const CVector<TData>& vecsData )
{
const int iVecSize = vecsData.Size();
// copy new data in internal buffer
int iCurPos = 0;
const int iEnd = iPutPos + iVecSize;
// first check for buffer overrun
if ( iEnd <= iMemSize )
{
// actual copy operation
while ( iPutPos < iEnd )
{
vecsMemory[iPutPos++] = vecsData[iCurPos++];
}
// return "buffer is ready for readout" flag
return ( iEnd == iMemSize );
}
else
{
// buffer overrun or not initialized, return "not ready"
return false;
}
}
CVector<TData> Get()
{
iPutPos = 0;
return vecsMemory;
}
protected:
CVector<TData> vecsMemory;
int iMemSize;
int iPutPos;
};
#endif /* !defined ( BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_ ) */
/******************************************************************************\
* Copyright (c) 2004-2011
*
* Author(s):
* Volker Fischer
*
******************************************************************************
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any later
* version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
\******************************************************************************/
#if !defined ( BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_ )
#define BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_
#include "util.h"
#include "global.h"
/* Definitions ****************************************************************/
// each regular buffer access lead to a count for put and get, assuming 2.33 ms
// blocks we have 5 * 60 s / 2.33 ms * 2 = 22500
#define MAX_STATISTIC_COUNT 225000
// number of simulation network jitter buffers for evaluating the statistic
#define NUM_STAT_SIMULATION_BUFFERS 13
/* Classes ********************************************************************/
// Buffer base class -----------------------------------------------------------
template<class TData> class CBufferBase
{
public:
CBufferBase ( const bool bNIsSim = false ) :
bIsSimulation ( bNIsSim ), bIsInitialized ( false ) {}
void SetIsSimulation ( const bool bNIsSim ) { bIsSimulation = bNIsSim; }
virtual void Init ( const int iNewMemSize,
const bool bPreserve = false )
{
// in simulation mode the size is not changed during operation -> we do
// not have to implement special code for this case
// only enter the "preserve" branch, if object was already initialized
if ( bPreserve && ( !bIsSimulation ) && bIsInitialized )
{
// copy old data in new vector using get pointer as zero per
// definition
int iCurPos;
// copy current data in temporary vector
CVector<TData> vecTempMemory ( vecMemory );
// resize actual buffer memory
vecMemory.Init ( iNewMemSize );
// get maximum number of data to be copied
int iCopyLen = GetAvailData();
if ( iCopyLen > iNewMemSize )
{
iCopyLen = iNewMemSize;
}
// set correct buffer state
if ( iCopyLen >= iNewMemSize )
{
eBufState = CBufferBase<TData>::BS_FULL;
}
else
{
if ( iCopyLen == 0 )
{
eBufState = CBufferBase<TData>::BS_EMPTY;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
}
if ( iGetPos < iPutPos )
{
// "get" position is before "put" position -> no wrap around
for ( iCurPos = 0; iCurPos < iCopyLen; iCurPos++ )
{
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
}
// update put pointer
if ( eBufState == CBufferBase<TData>::BS_FULL )
{
iPutPos = 0;
}
else
{
iPutPos -= iGetPos;
}
}
else
{
// "put" position is before "get" position -> wrap around
bool bEnoughSpaceForSecondPart = true;
int iFirstPartLen = iMemSize - iGetPos;
// check that first copy length is not larger then new memory
if ( iFirstPartLen > iCopyLen )
{
iFirstPartLen = iCopyLen;
bEnoughSpaceForSecondPart = false;
}
for ( iCurPos = 0; iCurPos < iFirstPartLen; iCurPos++ )
{
vecMemory[iCurPos] = vecTempMemory[iGetPos + iCurPos];
}
if ( bEnoughSpaceForSecondPart )
{
// calculate remaining copy length
const int iRemainingCopyLen = iCopyLen - iFirstPartLen;
// perform copying of second part
for ( iCurPos = 0; iCurPos < iRemainingCopyLen; iCurPos++ )
{
vecMemory[iCurPos + iFirstPartLen] =
vecTempMemory[iCurPos];
}
}
// update put pointer
if ( eBufState == CBufferBase<TData>::BS_FULL )
{
iPutPos = 0;
}
else
{
iPutPos += iFirstPartLen;
}
}
// update get position -> zero per definition
iGetPos = 0;
}
else
{
// allocate memory for actual data buffer
if ( !bIsSimulation )
{
vecMemory.Init ( iNewMemSize );
}
// init buffer pointers and buffer state (empty buffer)
iGetPos = 0;
iPutPos = 0;
eBufState = CBufferBase<TData>::BS_EMPTY;
}
// store total memory size value
iMemSize = iNewMemSize;
// set initialized flag
bIsInitialized = true;
}
virtual bool Put ( const CVector<TData>& vecData,
const int iInSize )
{
if ( bIsSimulation )
{
// in this simulation only the buffer pointers and the buffer state
// is updated, no actual data is transferred
iPutPos += iInSize;
if ( iPutPos >= iMemSize )
{
iPutPos -= iMemSize;
}
}
else
{
// copy new data in internal buffer
int iCurPos = 0;
if ( iPutPos + iInSize > iMemSize )
{
// remaining space size for second block
const int iRemSpace = iPutPos + iInSize - iMemSize;
// data must be written in two steps because of wrap around
while ( iPutPos < iMemSize )
{
vecMemory[iPutPos++] = vecData[iCurPos++];
}
for ( iPutPos = 0; iPutPos < iRemSpace; iPutPos++ )
{
vecMemory[iPutPos] = vecData[iCurPos++];
}
}
else
{
// data can be written in one step
const int iEnd = iPutPos + iInSize;
while ( iPutPos < iEnd )
{
vecMemory[iPutPos++] = vecData[iCurPos++];
}
}
}
// set buffer state flag
if ( iPutPos == iGetPos )
{
eBufState = CBufferBase<TData>::BS_FULL;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
return true; // no error check in base class, alyways return ok
}
virtual bool Get ( CVector<TData>& vecData )
{
// get size of data to be get from the buffer
const int iInSize = vecData.Size();
if ( bIsSimulation )
{
// in this simulation only the buffer pointers and the buffer state
// is updated, no actual data is transferred
iGetPos += iInSize;
if ( iGetPos >= iMemSize )
{
iGetPos -= iMemSize;
}
}
else
{
// copy data from internal buffer in output buffer
int iCurPos = 0;
if ( iGetPos + iInSize > iMemSize )
{
// remaining data size for second block
const int iRemData = iGetPos + iInSize - iMemSize;
// data must be read in two steps because of wrap around
while ( iGetPos < iMemSize )
{
vecData[iCurPos++] = vecMemory[iGetPos++];
}
for ( iGetPos = 0; iGetPos < iRemData; iGetPos++ )
{
vecData[iCurPos++] = vecMemory[iGetPos];
}
}
else
{
// data can be read in one step
const int iEnd = iGetPos + iInSize;
while ( iGetPos < iEnd )
{
vecData[iCurPos++] = vecMemory[iGetPos++];
}
}
}
// set buffer state flag
if ( iPutPos == iGetPos )
{
eBufState = CBufferBase<TData>::BS_EMPTY;
}
else
{
eBufState = CBufferBase<TData>::BS_OK;
}
return true; // no error check in base class, alyways return ok
}
virtual int GetAvailSpace() const
{
// calculate available space in buffer
int iAvSpace = iGetPos - iPutPos;
// check for special case and wrap around
if ( iAvSpace < 0 )
{
iAvSpace += iMemSize; // wrap around
}
else
{
if ( ( iAvSpace == 0 ) && ( eBufState == BS_EMPTY ) )
{
iAvSpace = iMemSize;
}
}
return iAvSpace;
}
virtual int GetAvailData() const
{
// calculate available data in buffer
int iAvData = iPutPos - iGetPos;
// check for special case and wrap around
if ( iAvData < 0 )
{
iAvData += iMemSize; // wrap around
}
else
{
if ( ( iAvData == 0 ) && ( eBufState == BS_FULL ) )
{
iAvData = iMemSize;
}
}
return iAvData;
}
protected:
enum EBufState { BS_OK, BS_FULL, BS_EMPTY };
enum EClearType { CT_PUT, CT_GET };
virtual void Clear ( const EClearType eClearType )
{
// clear memory
if ( !bIsSimulation )
{
vecMemory.Reset ( 0 );
}
// init buffer pointers and buffer state (empty buffer)
iGetPos = 0;
iPutPos = 0;
eBufState = CBufferBase<TData>::BS_EMPTY;
}
CVector<TData> vecMemory;
int iMemSize;
int iGetPos;
int iPutPos;
EBufState eBufState;
bool bIsSimulation;
bool bIsInitialized;
};
// Network buffer (jitter buffer) ----------------------------------------------
class CNetBuf : public CBufferBase<uint8_t>
{
public:
CNetBuf ( const bool bNewIsSim = false ) :
CBufferBase<uint8_t> ( bNewIsSim ) {}
virtual void Init ( const int iNewBlockSize,
const int iNewNumBlocks,
const bool bPreserve = false );
int GetSize() { return iMemSize / iBlockSize; }
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
virtual bool Get ( CVector<uint8_t>& vecbyData );
protected:
virtual void Clear ( const EClearType eClearType );
int iBlockSize;
int iNumInvalidElements;
};
// Network buffer (jitter buffer) with statistic calculations ------------------
class CNetBufWithStats : public CNetBuf
{
public:
CNetBufWithStats();
virtual void Init ( const int iNewBlockSize,
const int iNewNumBlocks,
const bool bPreserve = false );
virtual bool Put ( const CVector<uint8_t>& vecbyData, const int iInSize );
virtual bool Get ( CVector<uint8_t>& vecbyData );
// TEST
void StoreAllSimAverages();
int GetAutoSetting();
protected:
// statistic (do not use the vector class since the classes do not have
// appropriate copy constructor/operator)
CErrorRate ErrorRateStatistic[NUM_STAT_SIMULATION_BUFFERS];
CNetBuf SimulationBuffer[NUM_STAT_SIMULATION_BUFFERS];
int viBufSizesForSim[NUM_STAT_SIMULATION_BUFFERS];
};
// Conversion buffer (very simple buffer) --------------------------------------
// For this very simple buffer no wrap around mechanism is implemented. We
// assume here, that the applied buffers are an integer fraction of the total
// buffer size.
template<class TData> class CConvBuf
{
public:
CConvBuf() { Init ( 0 ); }
void Init ( const int iNewMemSize )
{
// set memory size
iMemSize = iNewMemSize;
// allocate and clear memory for actual data buffer
vecsMemory.Init ( iMemSize );
iPutPos = 0;
}
int GetSize() const { return iMemSize; }
bool Put ( const CVector<TData>& vecsData )
{
const int iVecSize = vecsData.Size();
// copy new data in internal buffer
int iCurPos = 0;
const int iEnd = iPutPos + iVecSize;
// first check for buffer overrun
if ( iEnd <= iMemSize )
{
// actual copy operation
while ( iPutPos < iEnd )
{
vecsMemory[iPutPos++] = vecsData[iCurPos++];
}
// return "buffer is ready for readout" flag
return ( iEnd == iMemSize );
}
else
{
// buffer overrun or not initialized, return "not ready"
return false;
}
}
CVector<TData> Get()
{
iPutPos = 0;
return vecsMemory;
}
protected:
CVector<TData> vecsMemory;
int iMemSize;
int iPutPos;
};
#endif /* !defined ( BUFFER_H__3B123453_4344_BB23945IUHF1912__INCLUDED_ ) */