resampler is now capable of converting to 32 kHz

This commit is contained in:
Volker Fischer 2008-08-03 13:48:11 +00:00
parent 20011c7b8d
commit 1b76771862

View file

@ -1,12 +1,11 @@
/******************************************************************************\
* Copyright (c) 2004-2006
* Copyright (c) 2004-2008
*
* Author(s):
* Volker Fischer
*
* Description:
* Resample routine for arbitrary sample-rate conversions in a low range (for
* frequency offset correction).
* Resample routine for arbitrary sample-rate conversions in a low range.
* The algorithm is based on a polyphase structure. We upsample the input
* signal with a factor INTERP_DECIM_I_D1 and calculate two successive samples
* whereby we perform a linear interpolation between these two samples to get
@ -36,7 +35,9 @@
#include "resample.h"
/* Implementation *************************************************************/
/******************************************************************************\
* General Resampler *
\******************************************************************************/
int CResample::Resample ( CVector<double>& vecdInput,
CVector<double>& vecdOutput,
const double dRation )
@ -45,14 +46,14 @@ int CResample::Resample ( CVector<double>& vecdInput,
/* move old data from the end to the history part of the buffer and
add new data (shift register) */
/* Shift old values */
// shift old values
int iMovLen = iInputBlockSize;
for ( i = 0; i < iHistorySize; i++ )
{
vecdIntBuff[i] = vecdIntBuff[iMovLen++];
}
/* Add new block of data */
// add new block of data
int iBlockEnd = iHistorySize;
for ( i = 0; i < iInputBlockSize; i++ )
{
@ -63,26 +64,26 @@ int CResample::Resample ( CVector<double>& vecdInput,
sample-interval */
dTStep = (double) INTERP_DECIM_I_D1 / dRation;
/* init output counter */
// init output counter
int im = 0;
/* main loop */
// main loop
do
{
/* quantize output-time to interpolated time-index */
// quantize output-time to interpolated time-index
const int ik = (int) dtOut;
/* calculate convolutions for the two interpolation-taps ------------ */
/* phase for the linear interpolation-taps */
/* Calculate convolutions for the two interpolation-taps ------------ */
// phase for the linear interpolation-taps
const int ip1 = ik % INTERP_DECIM_I_D1;
const int ip2 = ( ik + 1 ) % INTERP_DECIM_I_D1;
/* sample positions in input vector */
// sample positions in input vector
const int in1 = (int) ( ik / INTERP_DECIM_I_D1 );
const int in2 = (int) ( ( ik + 1 ) / INTERP_DECIM_I_D1 );
/* convolution */
// convolution
double dy1 = 0.0;
double dy2 = 0.0;
for (int i = 0; i < NUM_TAPS_PER_PHASE1; i++)
@ -92,21 +93,21 @@ int CResample::Resample ( CVector<double>& vecdInput,
}
/* linear interpolation --------------------------------------------- */
/* get numbers after the comma */
/* Linear interpolation --------------------------------------------- */
// get numbers after the comma
const double dxInt = dtOut - (int) dtOut;
vecdOutput[im] = ( dy2 - dy1 ) * dxInt + dy1;
/* increase output counter */
// increase output counter
im++;
/* increase output-time and index one step */
// increase output-time and index one step
dtOut = dtOut + dTStep;
}
while ( dtOut < dBlockDuration );
/* set rtOut back */
// set rtOut back
dtOut -= iInputBlockSize * INTERP_DECIM_I_D1;
return im;
@ -120,16 +121,21 @@ void CResample::Init ( const int iNewInputBlockSize )
convolutions */
iHistorySize = NUM_TAPS_PER_PHASE1 + 1;
/* calculate block duration */
// calculate block duration
dBlockDuration = ( iInputBlockSize + iHistorySize - 1 ) * INTERP_DECIM_I_D1;
/* allocate memory for internal buffer, clear sample history */
// allocate memory for internal buffer, clear sample history
vecdIntBuff.Init ( iInputBlockSize + iHistorySize, 0.0 );
/* init absolute time for output stream (at the end of the history part */
// init absolute time for output stream (at the end of the history part
dtOut = (double) ( iHistorySize - 1 ) * INTERP_DECIM_I_D1;
}
/******************************************************************************\
* Audio Resampler *
\******************************************************************************/
void CAudioResample::Resample ( CVector<double>& vecdInput,
CVector<double>& vecdOutput )
{
@ -137,40 +143,37 @@ void CAudioResample::Resample ( CVector<double>& vecdInput,
if ( dRation == 1.0 )
{
/* if ratio is 1, no resampling is needed, just copy vector */
for ( j = 0; j < iOutputBlockSize; j++ )
{
vecdOutput[j] = vecdInput[j];
}
// if ratio is 1, no resampling is needed, just copy vector
vecdOutput = vecdInput;
}
else
{
/* move old data from the end to the history part of the buffer and
add new data (shift register) */
/* Shift old values */
// shift old values
int iMovLen = iInputBlockSize;
for ( j = 0; j < iNumTaps; j++ )
{
vecdIntBuff[j] = vecdIntBuff[iMovLen++];
}
/* Add new block of data */
// add new block of data
int iBlockEnd = iNumTaps;
for ( j = 0; j < iInputBlockSize; j++ )
{
vecdIntBuff[iBlockEnd++] = vecdInput[j];
}
/* main loop */
// main loop
for ( j = 0; j < iOutputBlockSize; j++ )
{
/* calculate filter phase */
// calculate filter phase
const int ip = (int) ( j * iI / dRation ) % iI;
/* sample position in input vector */
// sample position in input vector
const int in = (int) ( j / dRation ) + iNumTaps - 1;
/* convolution */
// convolution
double dy = 0.0;
for ( int i = 0; i < iNumTaps; i++ )
{
@ -183,7 +186,8 @@ void CAudioResample::Resample ( CVector<double>& vecdInput,
}
void CAudioResample::Init ( const int iNewInputBlockSize,
const int iFrom, const int iTo )
const int iFrom,
const int iTo )
{
dRation = ( (double) iTo ) / iFrom;
iInputBlockSize = iNewInputBlockSize;
@ -192,23 +196,21 @@ void CAudioResample::Init ( const int iNewInputBlockSize,
// set correct parameters
if ( iFrom == SND_CRD_SAMPLE_RATE ) // downsampling case
{
switch ( iFrom / iTo )
switch ( iTo )
{
case 2: // 48 kHz to 24 kHz
case ( SND_CRD_SAMPLE_RATE / 2 ): // 48 kHz to 24 kHz
pFiltTaps = fResTaps2;
iNumTaps = INTERP_I_2 * NUM_TAPS_PER_PHASE2;
iI = DECIM_D_2;
break;
/* not yet supported
case ( 2 / 3 ): // 48 kHz to 32 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = INTERP_I_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = DECIM_D_3_2;
break;
*/
case ( SND_CRD_SAMPLE_RATE * 2 / 3 ): // 48 kHz to 32 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = INTERP_I_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = DECIM_D_3_2;
break;
case 1: // 48 kHz to 48 kHz
case SND_CRD_SAMPLE_RATE: // 48 kHz to 48 kHz
// no resampling needed
break;
@ -218,23 +220,21 @@ case ( 2 / 3 ): // 48 kHz to 32 kHz
break;
}
}
else // upsampling case
else // upsampling case (assumption: iTo == SND_CRD_SAMPLE_RATE)
{
switch ( iTo / iFrom )
switch ( iFrom )
{
case 2: // 24 kHz to 48 kHz
case ( SND_CRD_SAMPLE_RATE / 2 ): // 24 kHz to 48 kHz
pFiltTaps = fResTaps2;
iNumTaps = DECIM_D_2 * NUM_TAPS_PER_PHASE2;
iI = INTERP_I_2;
break;
/* not yet supported
case 1.5: // 32 kHz to 48 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = DECIM_D_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = INTERP_I_3_2;
break;
*/
case ( SND_CRD_SAMPLE_RATE * 2 / 3 ): // 32 kHz to 48 kHz
pFiltTaps = fResTaps3_2;
iNumTaps = DECIM_D_3_2 * NUM_TAPS_PER_PHASE3_2;
iI = INTERP_I_3_2;
break;
default:
// resample ratio not defined, throw error