jamulus/libs/celt/bands.c

946 lines
29 KiB
C
Raw Normal View History

2009-08-12 18:50:50 +00:00
/* (C) 2007-2008 Jean-Marc Valin, CSIRO
(C) 2008-2009 Gregory Maxwell */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include "bands.h"
#include "modes.h"
#include "vq.h"
#include "cwrs.h"
#include "stack_alloc.h"
#include "os_support.h"
#include "mathops.h"
#include "rate.h"
const celt_word16_t sqrtC_1[2] = {QCONST16(1.f, 14), QCONST16(1.414214f, 14)};
#ifdef FIXED_POINT
/* Compute the amplitude (sqrt energy) in each of the bands */
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
for (c=0;c<C;c++)
{
for (i=0;i<m->nbEBands;i++)
{
int j;
celt_word32_t maxval=0;
celt_word32_t sum = 0;
j=eBands[i]; do {
maxval = MAX32(maxval, X[j+c*N]);
maxval = MAX32(maxval, -X[j+c*N]);
} while (++j<eBands[i+1]);
if (maxval > 0)
{
int shift = celt_ilog2(maxval)-10;
j=eBands[i]; do {
sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)),
EXTRACT16(VSHR32(X[j+c*N],shift)));
} while (++j<eBands[i+1]);
/* We're adding one here to make damn sure we never end up with a pitch vector that's
larger than unity norm */
bank[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
} else {
bank[i+c*m->nbEBands] = EPSILON;
}
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
}
}
/*printf ("\n");*/
}
/* Normalise each band such that the energy is one. */
void normalise_bands(const CELTMode *m, const celt_sig_t * __restrict freq, celt_norm_t * __restrict X, const celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
for (c=0;c<C;c++)
{
i=0; do {
celt_word16_t g;
int j,shift;
celt_word16_t E;
shift = celt_zlog2(bank[i+c*m->nbEBands])-13;
E = VSHR32(bank[i+c*m->nbEBands], shift);
g = EXTRACT16(celt_rcp(SHL32(E,3)));
j=eBands[i]; do {
X[j*C+c] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
} while (++j<eBands[i+1]);
} while (++i<m->nbEBands);
}
}
#else /* FIXED_POINT */
/* Compute the amplitude (sqrt energy) in each of the bands */
void compute_band_energies(const CELTMode *m, const celt_sig_t *X, celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
for (c=0;c<C;c++)
{
for (i=0;i<m->nbEBands;i++)
{
int j;
celt_word32_t sum = 1e-10;
for (j=eBands[i];j<eBands[i+1];j++)
sum += X[j+c*N]*X[j+c*N];
bank[i+c*m->nbEBands] = sqrt(sum);
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
}
}
/*printf ("\n");*/
}
#ifdef EXP_PSY
void compute_noise_energies(const CELTMode *m, const celt_sig_t *X, const celt_word16_t *tonality, celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
for (c=0;c<C;c++)
{
for (i=0;i<m->nbEBands;i++)
{
int j;
celt_word32_t sum = 1e-10;
for (j=eBands[i];j<eBands[i+1];j++)
sum += X[j*C+c]*X[j+c*N]*tonality[j];
bank[i+c*m->nbEBands] = sqrt(sum);
/*printf ("%f ", bank[i+c*m->nbEBands]);*/
}
}
/*printf ("\n");*/
}
#endif
/* Normalise each band such that the energy is one. */
void normalise_bands(const CELTMode *m, const celt_sig_t * __restrict freq, celt_norm_t * __restrict X, const celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
for (c=0;c<C;c++)
{
for (i=0;i<m->nbEBands;i++)
{
int j;
celt_word16_t g = 1.f/(1e-10+bank[i+c*m->nbEBands]);
for (j=eBands[i];j<eBands[i+1];j++)
X[j*C+c] = freq[j+c*N]*g;
}
}
}
#endif /* FIXED_POINT */
#ifndef DISABLE_STEREO
void renormalise_bands(const CELTMode *m, celt_norm_t * __restrict X)
{
int i, c;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
for (c=0;c<C;c++)
{
i=0; do {
renormalise_vector(X+C*eBands[i]+c, QCONST16(0.70711f, 15), eBands[i+1]-eBands[i], C);
} while (++i<m->nbEBands);
}
}
#endif /* DISABLE_STEREO */
/* De-normalise the energy to produce the synthesis from the unit-energy bands */
void denormalise_bands(const CELTMode *m, const celt_norm_t * __restrict X, celt_sig_t * __restrict freq, const celt_ener_t *bank)
{
int i, c, N;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
N = FRAMESIZE(m);
if (C>2)
celt_fatal("denormalise_bands() not implemented for >2 channels");
for (c=0;c<C;c++)
{
for (i=0;i<m->nbEBands;i++)
{
int j;
celt_word32_t g = SHR32(bank[i+c*m->nbEBands],1);
j=eBands[i]; do {
freq[j+c*N] = SHL32(MULT16_32_Q15(X[j*C+c], g),2);
} while (++j<eBands[i+1]);
}
for (i=eBands[m->nbEBands];i<eBands[m->nbEBands+1];i++)
freq[i+c*N] = 0;
}
}
/* Compute the best gain for each "pitch band" */
int compute_pitch_gain(const CELTMode *m, const celt_norm_t *X, const celt_norm_t *P, celt_pgain_t *gains)
{
int i;
int gain_sum = 0;
const celt_int16_t *pBands = m->pBands;
const int C = CHANNELS(m);
for (i=0;i<m->nbPBands;i++)
{
celt_word32_t Sxy=0, Sxx=0;
int j;
/* We know we're not going to overflow because Sxx can't be more than 1 (Q28) */
for (j=C*pBands[i];j<C*pBands[i+1];j++)
{
Sxy = MAC16_16(Sxy, X[j], P[j]);
Sxx = MAC16_16(Sxx, X[j], X[j]);
}
Sxy = SHR32(Sxy,2);
Sxx = SHR32(Sxx,2);
/* No negative gain allowed */
if (Sxy < 0)
Sxy = 0;
/* Not sure how that would happen, just making sure */
if (Sxy > Sxx)
Sxy = Sxx;
/* We need to be a bit conservative (multiply gain by 0.9), otherwise the
residual doesn't quantise well */
Sxy = MULT16_32_Q15(QCONST16(.99f, 15), Sxy);
/* gain = Sxy/Sxx */
gains[i] = EXTRACT16(celt_div(Sxy,ADD32(SHR32(Sxx, PGAIN_SHIFT),EPSILON)));
if (gains[i]>QCONST16(.5,15))
gain_sum++;
}
return gain_sum > 5;
}
#ifndef DISABLE_STEREO
static void stereo_band_mix(const CELTMode *m, celt_norm_t *X, const celt_ener_t *bank, int stereo_mode, int bandID, int dir)
{
int i = bandID;
const celt_int16_t *eBands = m->eBands;
const int C = CHANNELS(m);
int j;
celt_word16_t a1, a2;
if (stereo_mode==0)
{
/* Do mid-side when not doing intensity stereo */
a1 = QCONST16(.70711f,14);
a2 = dir*QCONST16(.70711f,14);
} else {
celt_word16_t left, right;
celt_word16_t norm;
#ifdef FIXED_POINT
int shift = celt_zlog2(MAX32(bank[i], bank[i+m->nbEBands]))-13;
#endif
left = VSHR32(bank[i],shift);
right = VSHR32(bank[i+m->nbEBands],shift);
norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm);
}
for (j=eBands[i];j<eBands[i+1];j++)
{
celt_norm_t r, l;
l = X[j*C];
r = X[j*C+1];
X[j*C] = MULT16_16_Q14(a1,l) + MULT16_16_Q14(a2,r);
X[j*C+1] = MULT16_16_Q14(a1,r) - MULT16_16_Q14(a2,l);
}
}
void interleave(celt_norm_t *x, int N)
{
int i;
VARDECL(celt_norm_t, tmp);
SAVE_STACK;
ALLOC(tmp, N, celt_norm_t);
for (i=0;i<N;i++)
tmp[i] = x[i];
for (i=0;i<N>>1;i++)
{
x[i<<1] = tmp[i];
x[(i<<1)+1] = tmp[i+(N>>1)];
}
RESTORE_STACK;
}
void deinterleave(celt_norm_t *x, int N)
{
int i;
VARDECL(celt_norm_t, tmp);
SAVE_STACK;
ALLOC(tmp, N, celt_norm_t);
for (i=0;i<N;i++)
tmp[i] = x[i];
for (i=0;i<N>>1;i++)
{
x[i] = tmp[i<<1];
x[i+(N>>1)] = tmp[(i<<1)+1];
}
RESTORE_STACK;
}
#endif /* DISABLE_STEREO */
int folding_decision(const CELTMode *m, celt_norm_t *X, celt_word16_t *average, int *last_decision)
{
int i;
int NR=0;
celt_word32_t ratio = EPSILON;
const celt_int16_t * __restrict eBands = m->eBands;
for (i=0;i<m->nbEBands;i++)
{
int j, N;
int max_i=0;
celt_word16_t max_val=EPSILON;
celt_word32_t floor_ener=EPSILON;
celt_norm_t * __restrict x = X+eBands[i];
N = eBands[i+1]-eBands[i];
for (j=0;j<N;j++)
{
if (ABS16(x[j])>max_val)
{
max_val = ABS16(x[j]);
max_i = j;
}
}
#if 0
for (j=0;j<N;j++)
{
if (abs(j-max_i)>2)
floor_ener += x[j]*x[j];
}
#else
floor_ener = QCONST32(1.,28)-MULT16_16(max_val,max_val);
if (max_i < N-1)
floor_ener -= MULT16_16(x[max_i+1], x[max_i+1]);
if (max_i < N-2)
floor_ener -= MULT16_16(x[max_i+2], x[max_i+2]);
if (max_i > 0)
floor_ener -= MULT16_16(x[max_i-1], x[max_i-1]);
if (max_i > 1)
floor_ener -= MULT16_16(x[max_i-2], x[max_i-2]);
floor_ener = MAX32(floor_ener, EPSILON);
#endif
if (N>7 && eBands[i] >= m->pitchEnd)
{
celt_word16_t r;
celt_word16_t den = celt_sqrt(floor_ener);
den = MAX32(QCONST16(.02, 15), den);
r = DIV32_16(SHL32(EXTEND32(max_val),8),den);
ratio = ADD32(ratio, EXTEND32(r));
NR++;
}
}
if (NR>0)
ratio = DIV32_16(ratio, NR);
ratio = ADD32(HALF32(ratio), HALF32(*average));
if (!*last_decision)
{
*last_decision = (ratio < QCONST16(1.8,8));
} else {
*last_decision = (ratio < QCONST16(3.,8));
}
*average = EXTRACT16(ratio);
return *last_decision;
}
/* Quantisation of the residual */
void quant_bands(const CELTMode *m, celt_norm_t * __restrict X, celt_norm_t *P, celt_mask_t *W, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_enc *enc)
{
int i, j, remaining_bits, balance;
const celt_int16_t * __restrict eBands = m->eBands;
celt_norm_t * __restrict norm;
VARDECL(celt_norm_t, _norm); const celt_int16_t *pBands = m->pBands;
int pband=-1;
int B;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
ALLOC(_norm, eBands[m->nbEBands+1], celt_norm_t);
norm = _norm;
balance = 0;
for (i=0;i<m->nbEBands;i++)
{
int tell;
int N;
int q;
celt_word16_t n;
const celt_int16_t * const *BPbits;
int curr_balance, curr_bits;
N = eBands[i+1]-eBands[i];
BPbits = m->bits;
tell = ec_enc_tell(enc, 4);
if (i != 0)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
if (curr_balance > 3)
curr_balance = 3;
curr_balance = balance / curr_balance;
q = bits2pulses(m, BPbits[i], N, pulses[i]+curr_balance);
curr_bits = pulses2bits(BPbits[i], N, q);
remaining_bits -= curr_bits;
while (remaining_bits < 0 && q > 0)
{
remaining_bits += curr_bits;
q--;
curr_bits = pulses2bits(BPbits[i], N, q);
remaining_bits -= curr_bits;
}
balance += pulses[i] + tell;
n = SHL16(celt_sqrt(eBands[i+1]-eBands[i]),11);
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
if (pitch_used && eBands[i]< m->pitchEnd && eBands[i] == pBands[pband+1])
{
int enabled = 1;
pband++;
if (remaining_bits >= 1<<BITRES) {
enabled = pgains[pband] > QCONST16(.5,15);
ec_enc_bits(enc, enabled, 1);
balance += 1<<BITRES;
}
if (enabled)
pgains[pband] = QCONST16(.9,15);
else
pgains[pband] = 0;
}
/* If pitch isn't available, use intra-frame prediction */
if ((eBands[i] >= m->pitchEnd && fold) || q<=0)
{
intra_fold(m, X+eBands[i], eBands[i+1]-eBands[i], &q, norm, P+eBands[i], eBands[i], B);
} else if (pitch_used && eBands[i] < m->pitchEnd) {
for (j=eBands[i];j<eBands[i+1];j++)
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
} else {
for (j=eBands[i];j<eBands[i+1];j++)
P[j] = 0;
}
if (q > 0)
{
alg_quant(X+eBands[i], W+eBands[i], eBands[i+1]-eBands[i], q, P+eBands[i], enc);
} else {
for (j=eBands[i];j<eBands[i+1];j++)
X[j] = P[j];
}
for (j=eBands[i];j<eBands[i+1];j++)
norm[j] = MULT16_16_Q15(n,X[j]);
}
RESTORE_STACK;
}
#ifndef DISABLE_STEREO
void quant_bands_stereo(const CELTMode *m, celt_norm_t * __restrict X, celt_norm_t *P, celt_mask_t *W, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_enc *enc)
{
int i, j, remaining_bits, balance;
const celt_int16_t * __restrict eBands = m->eBands;
celt_norm_t * __restrict norm;
VARDECL(celt_norm_t, _norm);
const int C = CHANNELS(m);
const celt_int16_t *pBands = m->pBands;
int pband=-1;
int B;
celt_word16_t mid, side;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
norm = _norm;
balance = 0;
for (i=0;i<m->nbEBands;i++)
{
int c;
int tell;
int q1, q2;
celt_word16_t n;
const celt_int16_t * const *BPbits;
int b, qb;
int N;
int curr_balance, curr_bits;
int imid, iside, itheta;
int mbits, sbits, delta;
int qalloc;
BPbits = m->bits;
N = eBands[i+1]-eBands[i];
tell = ec_enc_tell(enc, 4);
if (i != 0)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
if (curr_balance > 3)
curr_balance = 3;
curr_balance = balance / curr_balance;
b = IMIN(remaining_bits+1,pulses[i]+curr_balance);
if (b<0)
b = 0;
qb = (b-2*(N-1)*(40-log2_frac(N,4)))/(32*(N-1));
if (qb > (b>>BITRES)-1)
qb = (b>>BITRES)-1;
if (qb<0)
qb = 0;
if (qb>14)
qb = 14;
stereo_band_mix(m, X, bandE, qb==0, i, 1);
mid = renormalise_vector(X+C*eBands[i], Q15ONE, N, C);
side = renormalise_vector(X+C*eBands[i]+1, Q15ONE, N, C);
#ifdef FIXED_POINT
itheta = MULT16_16_Q15(QCONST16(0.63662,15),celt_atan2p(side, mid));
#else
itheta = floor(.5+16384*0.63662*atan2(side,mid));
#endif
qalloc = log2_frac((1<<qb)+1,4);
if (qb==0)
{
itheta=0;
} else {
int shift;
shift = 14-qb;
itheta = (itheta+(1<<shift>>1))>>shift;
ec_enc_uint(enc, itheta, (1<<qb)+1);
itheta <<= shift;
}
if (itheta == 0)
{
imid = 32767;
iside = 0;
delta = -10000;
} else if (itheta == 16384)
{
imid = 0;
iside = 32767;
delta = 10000;
} else {
imid = bitexact_cos(itheta);
iside = bitexact_cos(16384-itheta);
delta = (N-1)*(log2_frac(iside,6)-log2_frac(imid,6))>>2;
}
mbits = (b-qalloc/2-delta)/2;
if (mbits > b-qalloc)
mbits = b-qalloc;
if (mbits<0)
mbits=0;
sbits = b-qalloc-mbits;
q1 = bits2pulses(m, BPbits[i], N, mbits);
q2 = bits2pulses(m, BPbits[i], N, sbits);
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
remaining_bits -= curr_bits;
while (remaining_bits < 0 && (q1 > 0 || q2 > 0))
{
remaining_bits += curr_bits;
if (q1>q2)
{
q1--;
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
} else {
q2--;
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
}
remaining_bits -= curr_bits;
}
balance += pulses[i] + tell;
n = SHL16(celt_sqrt((eBands[i+1]-eBands[i])),11);
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
if (pitch_used && eBands[i]< m->pitchEnd && eBands[i] == pBands[pband+1])
{
int enabled = 1;
pband++;
if (remaining_bits >= 1<<BITRES) {
enabled = pgains[pband] > QCONST16(.5,15);
ec_enc_bits(enc, enabled, 1);
balance += 1<<BITRES;
}
if (enabled)
pgains[pband] = QCONST16(.9,15);
else
pgains[pband] = 0;
}
/* If pitch isn't available, use intra-frame prediction */
if ((eBands[i] >= m->pitchEnd && fold) || (q1+q2)<=0)
{
int K[2] = {q1, q2};
intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], K, norm, P+C*eBands[i], eBands[i], B);
deinterleave(P+C*eBands[i], C*N);
} else if (pitch_used && eBands[i] < m->pitchEnd) {
stereo_band_mix(m, P, bandE, qb==0, i, 1);
renormalise_vector(P+C*eBands[i], Q15ONE, N, C);
renormalise_vector(P+C*eBands[i]+1, Q15ONE, N, C);
deinterleave(P+C*eBands[i], C*N);
for (j=C*eBands[i];j<C*eBands[i+1];j++)
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
} else {
for (j=C*eBands[i];j<C*eBands[i+1];j++)
P[j] = 0;
}
deinterleave(X+C*eBands[i], C*N);
if (q1 > 0)
alg_quant(X+C*eBands[i], W+C*eBands[i], N, q1, P+C*eBands[i], enc);
else
for (j=C*eBands[i];j<C*eBands[i]+N;j++)
X[j] = P[j];
if (q2 > 0)
alg_quant(X+C*eBands[i]+N, W+C*eBands[i], N, q2, P+C*eBands[i]+N, enc);
else
for (j=C*eBands[i]+N;j<C*eBands[i+1];j++)
X[j] = 0;
#ifdef FIXED_POINT
mid = imid;
side = iside;
#else
mid = (1./32768)*imid;
side = (1./32768)*iside;
#endif
for (c=0;c<C;c++)
for (j=0;j<N;j++)
norm[C*(eBands[i]+j)+c] = MULT16_16_Q15(n,X[C*eBands[i]+c*N+j]);
for (j=0;j<N;j++)
X[C*eBands[i]+j] = MULT16_16_Q15(X[C*eBands[i]+j], mid);
for (j=0;j<N;j++)
X[C*eBands[i]+N+j] = MULT16_16_Q15(X[C*eBands[i]+N+j], side);
interleave(X+C*eBands[i], C*N);
stereo_band_mix(m, X, bandE, 0, i, -1);
renormalise_vector(X+C*eBands[i], Q15ONE, N, C);
renormalise_vector(X+C*eBands[i]+1, Q15ONE, N, C);
}
RESTORE_STACK;
}
#endif /* DISABLE_STEREO */
/* Decoding of the residual */
void unquant_bands(const CELTMode *m, celt_norm_t * __restrict X, celt_norm_t *P, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_dec *dec)
{
int i, j, remaining_bits, balance;
const celt_int16_t * __restrict eBands = m->eBands;
celt_norm_t * __restrict norm;
VARDECL(celt_norm_t, _norm);
const celt_int16_t *pBands = m->pBands;
int pband=-1;
int B;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
ALLOC(_norm, eBands[m->nbEBands+1], celt_norm_t);
norm = _norm;
balance = 0;
for (i=0;i<m->nbEBands;i++)
{
int tell;
int N;
int q;
celt_word16_t n;
const celt_int16_t * const *BPbits;
int curr_balance, curr_bits;
N = eBands[i+1]-eBands[i];
BPbits = m->bits;
tell = ec_dec_tell(dec, 4);
if (i != 0)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
if (curr_balance > 3)
curr_balance = 3;
curr_balance = balance / curr_balance;
q = bits2pulses(m, BPbits[i], N, pulses[i]+curr_balance);
curr_bits = pulses2bits(BPbits[i], N, q);
remaining_bits -= curr_bits;
while (remaining_bits < 0 && q > 0)
{
remaining_bits += curr_bits;
q--;
curr_bits = pulses2bits(BPbits[i], N, q);
remaining_bits -= curr_bits;
}
balance += pulses[i] + tell;
n = SHL16(celt_sqrt(eBands[i+1]-eBands[i]),11);
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
if (pitch_used && eBands[i] < m->pitchEnd && eBands[i] == pBands[pband+1])
{
int enabled = 1;
pband++;
if (remaining_bits >= 1<<BITRES) {
enabled = ec_dec_bits(dec, 1);
balance += 1<<BITRES;
}
if (enabled)
pgains[pband] = QCONST16(.9,15);
else
pgains[pband] = 0;
}
/* If pitch isn't available, use intra-frame prediction */
if ((eBands[i] >= m->pitchEnd && fold) || q<=0)
{
intra_fold(m, X+eBands[i], eBands[i+1]-eBands[i], &q, norm, P+eBands[i], eBands[i], B);
} else if (pitch_used && eBands[i] < m->pitchEnd) {
for (j=eBands[i];j<eBands[i+1];j++)
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
} else {
for (j=eBands[i];j<eBands[i+1];j++)
P[j] = 0;
}
if (q > 0)
{
alg_unquant(X+eBands[i], eBands[i+1]-eBands[i], q, P+eBands[i], dec);
} else {
for (j=eBands[i];j<eBands[i+1];j++)
X[j] = P[j];
}
for (j=eBands[i];j<eBands[i+1];j++)
norm[j] = MULT16_16_Q15(n,X[j]);
}
RESTORE_STACK;
}
#ifndef DISABLE_STEREO
void unquant_bands_stereo(const CELTMode *m, celt_norm_t * __restrict X, celt_norm_t *P, int pitch_used, celt_pgain_t *pgains, const celt_ener_t *bandE, int *pulses, int shortBlocks, int fold, int total_bits, ec_dec *dec)
{
int i, j, remaining_bits, balance;
const celt_int16_t * __restrict eBands = m->eBands;
celt_norm_t * __restrict norm;
VARDECL(celt_norm_t, _norm);
const int C = CHANNELS(m);
const celt_int16_t *pBands = m->pBands;
int pband=-1;
int B;
celt_word16_t mid, side;
SAVE_STACK;
B = shortBlocks ? m->nbShortMdcts : 1;
ALLOC(_norm, C*eBands[m->nbEBands+1], celt_norm_t);
norm = _norm;
balance = 0;
for (i=0;i<m->nbEBands;i++)
{
int c;
int tell;
int q1, q2;
celt_word16_t n;
const celt_int16_t * const *BPbits;
int b, qb;
int N;
int curr_balance, curr_bits;
int imid, iside, itheta;
int mbits, sbits, delta;
int qalloc;
BPbits = m->bits;
N = eBands[i+1]-eBands[i];
tell = ec_dec_tell(dec, 4);
if (i != 0)
balance -= tell;
remaining_bits = (total_bits<<BITRES)-tell-1;
curr_balance = (m->nbEBands-i);
if (curr_balance > 3)
curr_balance = 3;
curr_balance = balance / curr_balance;
b = IMIN(remaining_bits+1,pulses[i]+curr_balance);
if (b<0)
b = 0;
qb = (b-2*(N-1)*(40-log2_frac(N,4)))/(32*(N-1));
if (qb > (b>>BITRES)-1)
qb = (b>>BITRES)-1;
if (qb>14)
qb = 14;
if (qb<0)
qb = 0;
qalloc = log2_frac((1<<qb)+1,4);
if (qb==0)
{
itheta=0;
} else {
int shift;
shift = 14-qb;
itheta = ec_dec_uint(dec, (1<<qb)+1);
itheta <<= shift;
}
if (itheta == 0)
{
imid = 32767;
iside = 0;
delta = -10000;
} else if (itheta == 16384)
{
imid = 0;
iside = 32767;
delta = 10000;
} else {
imid = bitexact_cos(itheta);
iside = bitexact_cos(16384-itheta);
delta = (N-1)*(log2_frac(iside,6)-log2_frac(imid,6))>>2;
}
mbits = (b-qalloc/2-delta)/2;
if (mbits > b-qalloc)
mbits = b-qalloc;
if (mbits<0)
mbits=0;
sbits = b-qalloc-mbits;
q1 = bits2pulses(m, BPbits[i], N, mbits);
q2 = bits2pulses(m, BPbits[i], N, sbits);
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
remaining_bits -= curr_bits;
while (remaining_bits < 0 && (q1 > 0 || q2 > 0))
{
remaining_bits += curr_bits;
if (q1>q2)
{
q1--;
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
} else {
q2--;
curr_bits = pulses2bits(BPbits[i], N, q1)+pulses2bits(BPbits[i], N, q2)+qalloc;
}
remaining_bits -= curr_bits;
}
balance += pulses[i] + tell;
n = SHL16(celt_sqrt((eBands[i+1]-eBands[i])),11);
/* If pitch is in use and this eBand begins a pitch band, encode the pitch gain flag */
if (pitch_used && eBands[i]< m->pitchEnd && eBands[i] == pBands[pband+1])
{
int enabled = 1;
pband++;
if (remaining_bits >= 1<<BITRES) {
enabled = ec_dec_bits(dec, 1);
balance += 1<<BITRES;
}
if (enabled)
pgains[pband] = QCONST16(.9,15);
else
pgains[pband] = 0;
}
/* If pitch isn't available, use intra-frame prediction */
if ((eBands[i] >= m->pitchEnd && fold) || (q1+q2)<=0)
{
int K[2] = {q1, q2};
intra_fold(m, X+C*eBands[i], eBands[i+1]-eBands[i], K, norm, P+C*eBands[i], eBands[i], B);
deinterleave(P+C*eBands[i], C*N);
} else if (pitch_used && eBands[i] < m->pitchEnd) {
stereo_band_mix(m, P, bandE, qb==0, i, 1);
renormalise_vector(P+C*eBands[i], Q15ONE, N, C);
renormalise_vector(P+C*eBands[i]+1, Q15ONE, N, C);
deinterleave(P+C*eBands[i], C*N);
for (j=C*eBands[i];j<C*eBands[i+1];j++)
P[j] = MULT16_16_Q15(pgains[pband], P[j]);
} else {
for (j=C*eBands[i];j<C*eBands[i+1];j++)
P[j] = 0;
}
deinterleave(X+C*eBands[i], C*N);
if (q1 > 0)
alg_unquant(X+C*eBands[i], N, q1, P+C*eBands[i], dec);
else
for (j=C*eBands[i];j<C*eBands[i]+N;j++)
X[j] = P[j];
if (q2 > 0)
alg_unquant(X+C*eBands[i]+N, N, q2, P+C*eBands[i]+N, dec);
else
for (j=C*eBands[i]+N;j<C*eBands[i+1];j++)
X[j] = 0;
/*orthogonalize(X+C*eBands[i], X+C*eBands[i]+N, N);*/
#ifdef FIXED_POINT
mid = imid;
side = iside;
#else
mid = (1./32768)*imid;
side = (1./32768)*iside;
#endif
for (c=0;c<C;c++)
for (j=0;j<N;j++)
norm[C*(eBands[i]+j)+c] = MULT16_16_Q15(n,X[C*eBands[i]+c*N+j]);
for (j=0;j<N;j++)
X[C*eBands[i]+j] = MULT16_16_Q15(X[C*eBands[i]+j], mid);
for (j=0;j<N;j++)
X[C*eBands[i]+N+j] = MULT16_16_Q15(X[C*eBands[i]+N+j], side);
interleave(X+C*eBands[i], C*N);
stereo_band_mix(m, X, bandE, 0, i, -1);
renormalise_vector(X+C*eBands[i], Q15ONE, N, C);
renormalise_vector(X+C*eBands[i]+1, Q15ONE, N, C);
}
RESTORE_STACK;
}
#endif /* DISABLE_STEREO */