372 lines
10 KiB
C
372 lines
10 KiB
C
|
/* Copyright (C) 2002-2008 Jean-Marc Valin */
|
||
|
/**
|
||
|
@file mathops.h
|
||
|
@brief Various math functions
|
||
|
*/
|
||
|
/*
|
||
|
Redistribution and use in source and binary forms, with or without
|
||
|
modification, are permitted provided that the following conditions
|
||
|
are met:
|
||
|
|
||
|
- Redistributions of source code must retain the above copyright
|
||
|
notice, this list of conditions and the following disclaimer.
|
||
|
|
||
|
- Redistributions in binary form must reproduce the above copyright
|
||
|
notice, this list of conditions and the following disclaimer in the
|
||
|
documentation and/or other materials provided with the distribution.
|
||
|
|
||
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
||
|
contributors may be used to endorse or promote products derived from
|
||
|
this software without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#ifndef MATHOPS_H
|
||
|
#define MATHOPS_H
|
||
|
|
||
|
#include "arch.h"
|
||
|
#include "entcode.h"
|
||
|
#include "os_support.h"
|
||
|
|
||
|
#ifndef OVERRIDE_CELT_ILOG2
|
||
|
/** Integer log in base2. Undefined for zero and negative numbers */
|
||
|
static __inline celt_int16_t celt_ilog2(celt_word32_t x)
|
||
|
{
|
||
|
celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
|
||
|
return EC_ILOG(x)-1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef OVERRIDE_FIND_MAX16
|
||
|
static __inline int find_max16(celt_word16_t *x, int len)
|
||
|
{
|
||
|
celt_word16_t max_corr=-VERY_LARGE16;
|
||
|
int i, id = 0;
|
||
|
for (i=0;i<len;i++)
|
||
|
{
|
||
|
if (x[i] > max_corr)
|
||
|
{
|
||
|
id = i;
|
||
|
max_corr = x[i];
|
||
|
}
|
||
|
}
|
||
|
return id;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifndef OVERRIDE_FIND_MAX32
|
||
|
static __inline int find_max32(celt_word32_t *x, int len)
|
||
|
{
|
||
|
celt_word32_t max_corr=-VERY_LARGE32;
|
||
|
int i, id = 0;
|
||
|
for (i=0;i<len;i++)
|
||
|
{
|
||
|
if (x[i] > max_corr)
|
||
|
{
|
||
|
id = i;
|
||
|
max_corr = x[i];
|
||
|
}
|
||
|
}
|
||
|
return id;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define FRAC_MUL16(a,b) ((16384+((celt_int32_t)(celt_int16_t)(a)*(celt_int16_t)(b)))>>15)
|
||
|
static __inline celt_int16_t bitexact_cos(celt_int16_t x)
|
||
|
{
|
||
|
celt_int32_t tmp;
|
||
|
celt_int16_t x2;
|
||
|
tmp = (4096+((celt_int32_t)(x)*(x)))>>13;
|
||
|
if (tmp > 32767)
|
||
|
tmp = 32767;
|
||
|
x2 = tmp;
|
||
|
x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
||
|
if (x2 > 32766)
|
||
|
x2 = 32766;
|
||
|
return 1+x2;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef FIXED_POINT
|
||
|
|
||
|
#define celt_sqrt(x) ((float)sqrt(x))
|
||
|
#define celt_psqrt(x) ((float)sqrt(x))
|
||
|
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
||
|
#define celt_acos acos
|
||
|
#define celt_exp exp
|
||
|
#define celt_cos_norm(x) (cos((.5f*M_PI)*(x)))
|
||
|
#define celt_atan atan
|
||
|
#define celt_rcp(x) (1.f/(x))
|
||
|
#define celt_div(a,b) ((a)/(b))
|
||
|
|
||
|
#ifdef FLOAT_APPROX
|
||
|
|
||
|
/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
|
||
|
denorm, +/- inf and NaN are *not* handled */
|
||
|
|
||
|
/** Base-2 log approximation (log2(x)). */
|
||
|
static inline float celt_log2(float x)
|
||
|
{
|
||
|
int integer;
|
||
|
float frac;
|
||
|
union {
|
||
|
float f;
|
||
|
celt_uint32_t i;
|
||
|
} in;
|
||
|
in.f = x;
|
||
|
integer = (in.i>>23)-127;
|
||
|
in.i -= integer<<23;
|
||
|
frac = in.f - 1.5;
|
||
|
/* -0.41446 0.96093 -0.33981 0.15600 */
|
||
|
frac = -0.41446 + frac*(0.96093 + frac*(-0.33981 + frac*0.15600));
|
||
|
return 1+integer+frac;
|
||
|
}
|
||
|
|
||
|
/** Base-2 exponential approximation (2^x). */
|
||
|
static inline float celt_exp2(float x)
|
||
|
{
|
||
|
int integer;
|
||
|
float frac;
|
||
|
union {
|
||
|
float f;
|
||
|
celt_uint32_t i;
|
||
|
} res;
|
||
|
integer = floor(x);
|
||
|
if (integer < -50)
|
||
|
return 0;
|
||
|
frac = x-integer;
|
||
|
/* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
|
||
|
res.f = 1.f + frac * (0.696147f + frac * (0.224411f + 0.079442f*frac));
|
||
|
res.i = (res.i + (integer<<23)) & 0x7fffffff;
|
||
|
return res.f;
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
#define celt_log2(x) (1.442695040888963387*log(x))
|
||
|
#define celt_exp2(x) (exp(0.6931471805599453094*(x)))
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef FIXED_POINT
|
||
|
|
||
|
#include "os_support.h"
|
||
|
|
||
|
#ifndef OVERRIDE_CELT_MAXABS16
|
||
|
static inline celt_word16_t celt_maxabs16(celt_word16_t *x, int len)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word16_t maxval = 0;
|
||
|
for (i=0;i<len;i++)
|
||
|
maxval = MAX16(maxval, ABS16(x[i]));
|
||
|
return maxval;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/** Integer log in base2. Defined for zero, but not for negative numbers */
|
||
|
static inline celt_int16_t celt_zlog2(celt_word32_t x)
|
||
|
{
|
||
|
return x <= 0 ? 0 : celt_ilog2(x);
|
||
|
}
|
||
|
|
||
|
/** Reciprocal sqrt approximation (Q30 input, Q0 output or equivalent) */
|
||
|
static inline celt_word32_t celt_rsqrt(celt_word32_t x)
|
||
|
{
|
||
|
int k;
|
||
|
celt_word16_t n;
|
||
|
celt_word32_t rt;
|
||
|
const celt_word16_t C[5] = {23126, -11496, 9812, -9097, 4100};
|
||
|
k = celt_ilog2(x)>>1;
|
||
|
x = VSHR32(x, (k-7)<<1);
|
||
|
/* Range of n is [-16384,32767] */
|
||
|
n = x-32768;
|
||
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||
|
rt = VSHR32(rt,k);
|
||
|
return rt;
|
||
|
}
|
||
|
|
||
|
/** Sqrt approximation (QX input, QX/2 output) */
|
||
|
static inline celt_word32_t celt_sqrt(celt_word32_t x)
|
||
|
{
|
||
|
int k;
|
||
|
celt_word16_t n;
|
||
|
celt_word32_t rt;
|
||
|
const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
|
||
|
if (x==0)
|
||
|
return 0;
|
||
|
k = (celt_ilog2(x)>>1)-7;
|
||
|
x = VSHR32(x, (k<<1));
|
||
|
n = x-32768;
|
||
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||
|
rt = VSHR32(rt,7-k);
|
||
|
return rt;
|
||
|
}
|
||
|
|
||
|
/** Sqrt approximation (QX input, QX/2 output) that assumes that the input is
|
||
|
strictly positive */
|
||
|
static inline celt_word32_t celt_psqrt(celt_word32_t x)
|
||
|
{
|
||
|
int k;
|
||
|
celt_word16_t n;
|
||
|
celt_word32_t rt;
|
||
|
const celt_word16_t C[5] = {23174, 11584, -3011, 1570, -557};
|
||
|
k = (celt_ilog2(x)>>1)-7;
|
||
|
x = VSHR32(x, (k<<1));
|
||
|
n = x-32768;
|
||
|
rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||
|
rt = VSHR32(rt,7-k);
|
||
|
return rt;
|
||
|
}
|
||
|
|
||
|
#define L1 32767
|
||
|
#define L2 -7651
|
||
|
#define L3 8277
|
||
|
#define L4 -626
|
||
|
|
||
|
static inline celt_word16_t _celt_cos_pi_2(celt_word16_t x)
|
||
|
{
|
||
|
celt_word16_t x2;
|
||
|
|
||
|
x2 = MULT16_16_P15(x,x);
|
||
|
return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
|
||
|
))))))));
|
||
|
}
|
||
|
|
||
|
#undef L1
|
||
|
#undef L2
|
||
|
#undef L3
|
||
|
#undef L4
|
||
|
|
||
|
static inline celt_word16_t celt_cos_norm(celt_word32_t x)
|
||
|
{
|
||
|
x = x&0x0001ffff;
|
||
|
if (x>SHL32(EXTEND32(1), 16))
|
||
|
x = SUB32(SHL32(EXTEND32(1), 17),x);
|
||
|
if (x&0x00007fff)
|
||
|
{
|
||
|
if (x<SHL32(EXTEND32(1), 15))
|
||
|
{
|
||
|
return _celt_cos_pi_2(EXTRACT16(x));
|
||
|
} else {
|
||
|
return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
|
||
|
}
|
||
|
} else {
|
||
|
if (x&0x0000ffff)
|
||
|
return 0;
|
||
|
else if (x&0x0001ffff)
|
||
|
return -32767;
|
||
|
else
|
||
|
return 32767;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static inline celt_word16_t celt_log2(celt_word32_t x)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word16_t n, frac;
|
||
|
/*-0.41446 0.96093 -0.33981 0.15600 */
|
||
|
const celt_word16_t C[4] = {-6791, 7872, -1392, 319};
|
||
|
if (x==0)
|
||
|
return -32767;
|
||
|
i = celt_ilog2(x);
|
||
|
n = VSHR32(x,i-15)-32768-16384;
|
||
|
frac = ADD16(C[0], MULT16_16_Q14(n, ADD16(C[1], MULT16_16_Q14(n, ADD16(C[2], MULT16_16_Q14(n, (C[3])))))));
|
||
|
return SHL16(i-13,8)+SHR16(frac,14-8);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
K0 = 1
|
||
|
K1 = log(2)
|
||
|
K2 = 3-4*log(2)
|
||
|
K3 = 3*log(2) - 2
|
||
|
*/
|
||
|
#define D0 16384
|
||
|
#define D1 11356
|
||
|
#define D2 3726
|
||
|
#define D3 1301
|
||
|
/** Base-2 exponential approximation (2^x). (Q11 input, Q16 output) */
|
||
|
static inline celt_word32_t celt_exp2(celt_word16_t x)
|
||
|
{
|
||
|
int integer;
|
||
|
celt_word16_t frac;
|
||
|
integer = SHR16(x,11);
|
||
|
if (integer>14)
|
||
|
return 0x7f000000;
|
||
|
else if (integer < -15)
|
||
|
return 0;
|
||
|
frac = SHL16(x-SHL16(integer,11),3);
|
||
|
frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
|
||
|
return VSHR32(EXTEND32(frac), -integer-2);
|
||
|
}
|
||
|
|
||
|
/** Reciprocal approximation (Q15 input, Q16 output) */
|
||
|
static inline celt_word32_t celt_rcp(celt_word32_t x)
|
||
|
{
|
||
|
int i;
|
||
|
celt_word16_t n, frac;
|
||
|
const celt_word16_t C[5] = {21848, -7251, 2403, -934, 327};
|
||
|
celt_assert2(x>0, "celt_rcp() only defined for positive values");
|
||
|
i = celt_ilog2(x);
|
||
|
n = VSHR32(x,i-16)-SHL32(EXTEND32(3),15);
|
||
|
frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
|
||
|
MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
|
||
|
return VSHR32(EXTEND32(frac),i-16);
|
||
|
}
|
||
|
|
||
|
#define celt_div(a,b) MULT32_32_Q31((celt_word32_t)(a),celt_rcp(b))
|
||
|
|
||
|
|
||
|
#define M1 32767
|
||
|
#define M2 -21
|
||
|
#define M3 -11943
|
||
|
#define M4 4936
|
||
|
|
||
|
static inline celt_word16_t celt_atan01(celt_word16_t x)
|
||
|
{
|
||
|
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
||
|
}
|
||
|
|
||
|
#undef M1
|
||
|
#undef M2
|
||
|
#undef M3
|
||
|
#undef M4
|
||
|
|
||
|
static inline celt_word16_t celt_atan2p(celt_word16_t y, celt_word16_t x)
|
||
|
{
|
||
|
if (y < x)
|
||
|
{
|
||
|
celt_word32_t arg;
|
||
|
arg = celt_div(SHL32(EXTEND32(y),15),x);
|
||
|
if (arg >= 32767)
|
||
|
arg = 32767;
|
||
|
return SHR16(celt_atan01(EXTRACT16(arg)),1);
|
||
|
} else {
|
||
|
celt_word32_t arg;
|
||
|
arg = celt_div(SHL32(EXTEND32(x),15),y);
|
||
|
if (arg >= 32767)
|
||
|
arg = 32767;
|
||
|
return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* FIXED_POINT */
|
||
|
|
||
|
|
||
|
#endif /* MATHOPS_H */
|