2013-02-16 09:23:32 +01:00
|
|
|
/***********************************************************************
|
|
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
2013-12-21 14:40:43 +01:00
|
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
2013-02-16 09:23:32 +01:00
|
|
|
names of specific contributors, may be used to endorse or promote
|
|
|
|
products derived from this software without specific prior written
|
|
|
|
permission.
|
2013-12-21 14:40:43 +01:00
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
2013-02-16 09:23:32 +01:00
|
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***********************************************************************/
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "main_FIX.h"
|
2013-12-21 14:40:43 +01:00
|
|
|
#include "stack_alloc.h"
|
2013-02-16 09:23:32 +01:00
|
|
|
#include "tuning_parameters.h"
|
|
|
|
|
|
|
|
/*****************************/
|
|
|
|
/* Internal function headers */
|
|
|
|
/*****************************/
|
|
|
|
|
|
|
|
typedef struct {
|
|
|
|
opus_int32 Q36_part;
|
|
|
|
opus_int32 Q48_part;
|
|
|
|
} inv_D_t;
|
|
|
|
|
|
|
|
/* Factorize square matrix A into LDL form */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LDL_factorize_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
|
|
|
|
opus_int M, /* I Size of Matrix */
|
|
|
|
opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
|
|
|
|
inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_SolveFirst_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
|
|
|
|
opus_int M, /* I Dim of Matrix equation */
|
|
|
|
const opus_int32 *b, /* I b Vector */
|
|
|
|
opus_int32 *x_Q16 /* O x Vector */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_SolveLast_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
|
|
|
|
const opus_int M, /* I Dim of Matrix equation */
|
|
|
|
const opus_int32 *b, /* I b Vector */
|
|
|
|
opus_int32 *x_Q16 /* O x Vector */
|
|
|
|
);
|
|
|
|
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_divide_Q16_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
opus_int32 T[], /* I/O Numenator vector */
|
|
|
|
inv_D_t *inv_D, /* I 1 / D vector */
|
|
|
|
opus_int M /* I dimension */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Solves Ax = b, assuming A is symmetric */
|
|
|
|
void silk_solve_LDL_FIX(
|
|
|
|
opus_int32 *A, /* I Pointer to symetric square matrix A */
|
|
|
|
opus_int M, /* I Size of matrix */
|
|
|
|
const opus_int32 *b, /* I Pointer to b vector */
|
|
|
|
opus_int32 *x_Q16 /* O Pointer to x solution vector */
|
|
|
|
)
|
|
|
|
{
|
2013-12-21 14:40:43 +01:00
|
|
|
VARDECL( opus_int32, L_Q16 );
|
2013-02-16 09:23:32 +01:00
|
|
|
opus_int32 Y[ MAX_MATRIX_SIZE ];
|
|
|
|
inv_D_t inv_D[ MAX_MATRIX_SIZE ];
|
2013-12-21 14:40:43 +01:00
|
|
|
SAVE_STACK;
|
2013-02-16 09:23:32 +01:00
|
|
|
|
|
|
|
silk_assert( M <= MAX_MATRIX_SIZE );
|
2013-12-21 14:40:43 +01:00
|
|
|
ALLOC( L_Q16, M * M, opus_int32 );
|
2013-02-16 09:23:32 +01:00
|
|
|
|
|
|
|
/***************************************************
|
|
|
|
Factorize A by LDL such that A = L*D*L',
|
|
|
|
where L is lower triangular with ones on diagonal
|
|
|
|
****************************************************/
|
|
|
|
silk_LDL_factorize_FIX( A, M, L_Q16, inv_D );
|
|
|
|
|
|
|
|
/****************************************************
|
|
|
|
* substitute D*L'*x = Y. ie:
|
|
|
|
L*D*L'*x = b => L*Y = b <=> Y = inv(L)*b
|
|
|
|
******************************************************/
|
|
|
|
silk_LS_SolveFirst_FIX( L_Q16, M, b, Y );
|
|
|
|
|
|
|
|
/****************************************************
|
|
|
|
D*L'*x = Y <=> L'*x = inv(D)*Y, because D is
|
|
|
|
diagonal just multiply with 1/d_i
|
|
|
|
****************************************************/
|
|
|
|
silk_LS_divide_Q16_FIX( Y, inv_D, M );
|
|
|
|
|
|
|
|
/****************************************************
|
|
|
|
x = inv(L') * inv(D) * Y
|
|
|
|
*****************************************************/
|
|
|
|
silk_LS_SolveLast_FIX( L_Q16, M, Y, x_Q16 );
|
2013-12-21 14:40:43 +01:00
|
|
|
RESTORE_STACK;
|
2013-02-16 09:23:32 +01:00
|
|
|
}
|
|
|
|
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LDL_factorize_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
opus_int32 *A, /* I/O Pointer to Symetric Square Matrix */
|
|
|
|
opus_int M, /* I Size of Matrix */
|
|
|
|
opus_int32 *L_Q16, /* I/O Pointer to Square Upper triangular Matrix */
|
|
|
|
inv_D_t *inv_D /* I/O Pointer to vector holding inverted diagonal elements of D */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, j, k, status, loop_count;
|
|
|
|
const opus_int32 *ptr1, *ptr2;
|
|
|
|
opus_int32 diag_min_value, tmp_32, err;
|
|
|
|
opus_int32 v_Q0[ MAX_MATRIX_SIZE ], D_Q0[ MAX_MATRIX_SIZE ];
|
|
|
|
opus_int32 one_div_diag_Q36, one_div_diag_Q40, one_div_diag_Q48;
|
|
|
|
|
|
|
|
silk_assert( M <= MAX_MATRIX_SIZE );
|
|
|
|
|
|
|
|
status = 1;
|
|
|
|
diag_min_value = silk_max_32( silk_SMMUL( silk_ADD_SAT32( A[ 0 ], A[ silk_SMULBB( M, M ) - 1 ] ), SILK_FIX_CONST( FIND_LTP_COND_FAC, 31 ) ), 1 << 9 );
|
|
|
|
for( loop_count = 0; loop_count < M && status == 1; loop_count++ ) {
|
|
|
|
status = 0;
|
|
|
|
for( j = 0; j < M; j++ ) {
|
|
|
|
ptr1 = matrix_adr( L_Q16, j, 0, M );
|
|
|
|
tmp_32 = 0;
|
|
|
|
for( i = 0; i < j; i++ ) {
|
|
|
|
v_Q0[ i ] = silk_SMULWW( D_Q0[ i ], ptr1[ i ] ); /* Q0 */
|
|
|
|
tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ i ], ptr1[ i ] ); /* Q0 */
|
|
|
|
}
|
|
|
|
tmp_32 = silk_SUB32( matrix_ptr( A, j, j, M ), tmp_32 );
|
|
|
|
|
|
|
|
if( tmp_32 < diag_min_value ) {
|
|
|
|
tmp_32 = silk_SUB32( silk_SMULBB( loop_count + 1, diag_min_value ), tmp_32 );
|
|
|
|
/* Matrix not positive semi-definite, or ill conditioned */
|
|
|
|
for( i = 0; i < M; i++ ) {
|
|
|
|
matrix_ptr( A, i, i, M ) = silk_ADD32( matrix_ptr( A, i, i, M ), tmp_32 );
|
|
|
|
}
|
|
|
|
status = 1;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
D_Q0[ j ] = tmp_32; /* always < max(Correlation) */
|
|
|
|
|
|
|
|
/* two-step division */
|
|
|
|
one_div_diag_Q36 = silk_INVERSE32_varQ( tmp_32, 36 ); /* Q36 */
|
|
|
|
one_div_diag_Q40 = silk_LSHIFT( one_div_diag_Q36, 4 ); /* Q40 */
|
|
|
|
err = silk_SUB32( (opus_int32)1 << 24, silk_SMULWW( tmp_32, one_div_diag_Q40 ) ); /* Q24 */
|
|
|
|
one_div_diag_Q48 = silk_SMULWW( err, one_div_diag_Q40 ); /* Q48 */
|
|
|
|
|
|
|
|
/* Save 1/Ds */
|
|
|
|
inv_D[ j ].Q36_part = one_div_diag_Q36;
|
|
|
|
inv_D[ j ].Q48_part = one_div_diag_Q48;
|
|
|
|
|
|
|
|
matrix_ptr( L_Q16, j, j, M ) = 65536; /* 1.0 in Q16 */
|
|
|
|
ptr1 = matrix_adr( A, j, 0, M );
|
|
|
|
ptr2 = matrix_adr( L_Q16, j + 1, 0, M );
|
|
|
|
for( i = j + 1; i < M; i++ ) {
|
|
|
|
tmp_32 = 0;
|
|
|
|
for( k = 0; k < j; k++ ) {
|
|
|
|
tmp_32 = silk_SMLAWW( tmp_32, v_Q0[ k ], ptr2[ k ] ); /* Q0 */
|
|
|
|
}
|
|
|
|
tmp_32 = silk_SUB32( ptr1[ i ], tmp_32 ); /* always < max(Correlation) */
|
|
|
|
|
|
|
|
/* tmp_32 / D_Q0[j] : Divide to Q16 */
|
|
|
|
matrix_ptr( L_Q16, i, j, M ) = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ),
|
|
|
|
silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
|
|
|
|
|
|
|
|
/* go to next column */
|
|
|
|
ptr2 += M;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
silk_assert( status == 0 );
|
|
|
|
}
|
|
|
|
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_divide_Q16_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
opus_int32 T[], /* I/O Numenator vector */
|
|
|
|
inv_D_t *inv_D, /* I 1 / D vector */
|
|
|
|
opus_int M /* I dimension */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i;
|
|
|
|
opus_int32 tmp_32;
|
|
|
|
opus_int32 one_div_diag_Q36, one_div_diag_Q48;
|
|
|
|
|
|
|
|
for( i = 0; i < M; i++ ) {
|
|
|
|
one_div_diag_Q36 = inv_D[ i ].Q36_part;
|
|
|
|
one_div_diag_Q48 = inv_D[ i ].Q48_part;
|
|
|
|
|
|
|
|
tmp_32 = T[ i ];
|
|
|
|
T[ i ] = silk_ADD32( silk_SMMUL( tmp_32, one_div_diag_Q48 ), silk_RSHIFT( silk_SMULWW( tmp_32, one_div_diag_Q36 ), 4 ) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Solve Lx = b, when L is lower triangular and has ones on the diagonal */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_SolveFirst_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
|
|
|
|
opus_int M, /* I Dim of Matrix equation */
|
|
|
|
const opus_int32 *b, /* I b Vector */
|
|
|
|
opus_int32 *x_Q16 /* O x Vector */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, j;
|
|
|
|
const opus_int32 *ptr32;
|
|
|
|
opus_int32 tmp_32;
|
|
|
|
|
|
|
|
for( i = 0; i < M; i++ ) {
|
|
|
|
ptr32 = matrix_adr( L_Q16, i, 0, M );
|
|
|
|
tmp_32 = 0;
|
|
|
|
for( j = 0; j < i; j++ ) {
|
|
|
|
tmp_32 = silk_SMLAWW( tmp_32, ptr32[ j ], x_Q16[ j ] );
|
|
|
|
}
|
|
|
|
x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Solve L^t*x = b, where L is lower triangular with ones on the diagonal */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE void silk_LS_SolveLast_FIX(
|
2013-02-16 09:23:32 +01:00
|
|
|
const opus_int32 *L_Q16, /* I Pointer to Lower Triangular Matrix */
|
|
|
|
const opus_int M, /* I Dim of Matrix equation */
|
|
|
|
const opus_int32 *b, /* I b Vector */
|
|
|
|
opus_int32 *x_Q16 /* O x Vector */
|
|
|
|
)
|
|
|
|
{
|
|
|
|
opus_int i, j;
|
|
|
|
const opus_int32 *ptr32;
|
|
|
|
opus_int32 tmp_32;
|
|
|
|
|
|
|
|
for( i = M - 1; i >= 0; i-- ) {
|
|
|
|
ptr32 = matrix_adr( L_Q16, 0, i, M );
|
|
|
|
tmp_32 = 0;
|
|
|
|
for( j = M - 1; j > i; j-- ) {
|
|
|
|
tmp_32 = silk_SMLAWW( tmp_32, ptr32[ silk_SMULBB( j, M ) ], x_Q16[ j ] );
|
|
|
|
}
|
|
|
|
x_Q16[ i ] = silk_SUB32( b[ i ], tmp_32 );
|
|
|
|
}
|
|
|
|
}
|