2013-02-16 09:23:32 +01:00
|
|
|
/***********************************************************************
|
|
|
|
Copyright (c) 2006-2011, Skype Limited. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
|
|
this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
2013-12-21 14:40:43 +01:00
|
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
2013-02-16 09:23:32 +01:00
|
|
|
names of specific contributors, may be used to endorse or promote
|
|
|
|
products derived from this software without specific prior written
|
|
|
|
permission.
|
2013-12-21 14:40:43 +01:00
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
2013-02-16 09:23:32 +01:00
|
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***********************************************************************/
|
|
|
|
|
|
|
|
#ifndef SILK_SIGPROC_FIX_H
|
|
|
|
#define SILK_SIGPROC_FIX_H
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C"
|
|
|
|
{
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*#define silk_MACRO_COUNT */ /* Used to enable WMOPS counting */
|
|
|
|
|
|
|
|
#define SILK_MAX_ORDER_LPC 16 /* max order of the LPC analysis in schur() and k2a() */
|
|
|
|
|
|
|
|
#include <string.h> /* for memset(), memcpy(), memmove() */
|
|
|
|
#include "typedef.h"
|
|
|
|
#include "resampler_structs.h"
|
|
|
|
#include "macros.h"
|
|
|
|
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/* SIGNAL PROCESSING FUNCTIONS */
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* Initialize/reset the resampler state for a given pair of input/output sampling rates
|
|
|
|
*/
|
|
|
|
opus_int silk_resampler_init(
|
|
|
|
silk_resampler_state_struct *S, /* I/O Resampler state */
|
|
|
|
opus_int32 Fs_Hz_in, /* I Input sampling rate (Hz) */
|
|
|
|
opus_int32 Fs_Hz_out, /* I Output sampling rate (Hz) */
|
|
|
|
opus_int forEnc /* I If 1: encoder; if 0: decoder */
|
|
|
|
);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* Resampler: convert from one sampling rate to another
|
|
|
|
*/
|
|
|
|
opus_int silk_resampler(
|
|
|
|
silk_resampler_state_struct *S, /* I/O Resampler state */
|
|
|
|
opus_int16 out[], /* O Output signal */
|
|
|
|
const opus_int16 in[], /* I Input signal */
|
|
|
|
opus_int32 inLen /* I Number of input samples */
|
|
|
|
);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* Downsample 2x, mediocre quality
|
|
|
|
*/
|
|
|
|
void silk_resampler_down2(
|
|
|
|
opus_int32 *S, /* I/O State vector [ 2 ] */
|
|
|
|
opus_int16 *out, /* O Output signal [ len ] */
|
|
|
|
const opus_int16 *in, /* I Input signal [ floor(len/2) ] */
|
|
|
|
opus_int32 inLen /* I Number of input samples */
|
|
|
|
);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* Downsample by a factor 2/3, low quality
|
|
|
|
*/
|
|
|
|
void silk_resampler_down2_3(
|
|
|
|
opus_int32 *S, /* I/O State vector [ 6 ] */
|
|
|
|
opus_int16 *out, /* O Output signal [ floor(2*inLen/3) ] */
|
|
|
|
const opus_int16 *in, /* I Input signal [ inLen ] */
|
|
|
|
opus_int32 inLen /* I Number of input samples */
|
|
|
|
);
|
|
|
|
|
|
|
|
/*!
|
|
|
|
* second order ARMA filter;
|
|
|
|
* slower than biquad() but uses more precise coefficients
|
|
|
|
* can handle (slowly) varying coefficients
|
|
|
|
*/
|
|
|
|
void silk_biquad_alt(
|
|
|
|
const opus_int16 *in, /* I input signal */
|
|
|
|
const opus_int32 *B_Q28, /* I MA coefficients [3] */
|
|
|
|
const opus_int32 *A_Q28, /* I AR coefficients [2] */
|
|
|
|
opus_int32 *S, /* I/O State vector [2] */
|
|
|
|
opus_int16 *out, /* O output signal */
|
|
|
|
const opus_int32 len, /* I signal length (must be even) */
|
|
|
|
opus_int stride /* I Operate on interleaved signal if > 1 */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Variable order MA prediction error filter. */
|
|
|
|
void silk_LPC_analysis_filter(
|
|
|
|
opus_int16 *out, /* O Output signal */
|
|
|
|
const opus_int16 *in, /* I Input signal */
|
|
|
|
const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
|
|
|
|
const opus_int32 len, /* I Signal length */
|
|
|
|
const opus_int32 d /* I Filter order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Chirp (bandwidth expand) LP AR filter */
|
|
|
|
void silk_bwexpander(
|
|
|
|
opus_int16 *ar, /* I/O AR filter to be expanded (without leading 1) */
|
|
|
|
const opus_int d, /* I Length of ar */
|
|
|
|
opus_int32 chirp_Q16 /* I Chirp factor (typically in the range 0 to 1) */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Chirp (bandwidth expand) LP AR filter */
|
|
|
|
void silk_bwexpander_32(
|
|
|
|
opus_int32 *ar, /* I/O AR filter to be expanded (without leading 1) */
|
|
|
|
const opus_int d, /* I Length of ar */
|
|
|
|
opus_int32 chirp_Q16 /* I Chirp factor in Q16 */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Compute inverse of LPC prediction gain, and */
|
|
|
|
/* test if LPC coefficients are stable (all poles within unit circle) */
|
|
|
|
opus_int32 silk_LPC_inverse_pred_gain( /* O Returns inverse prediction gain in energy domain, Q30 */
|
|
|
|
const opus_int16 *A_Q12, /* I Prediction coefficients, Q12 [order] */
|
|
|
|
const opus_int order /* I Prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* For input in Q24 domain */
|
|
|
|
opus_int32 silk_LPC_inverse_pred_gain_Q24( /* O Returns inverse prediction gain in energy domain, Q30 */
|
|
|
|
const opus_int32 *A_Q24, /* I Prediction coefficients [order] */
|
|
|
|
const opus_int order /* I Prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Split signal in two decimated bands using first-order allpass filters */
|
|
|
|
void silk_ana_filt_bank_1(
|
|
|
|
const opus_int16 *in, /* I Input signal [N] */
|
|
|
|
opus_int32 *S, /* I/O State vector [2] */
|
|
|
|
opus_int16 *outL, /* O Low band [N/2] */
|
|
|
|
opus_int16 *outH, /* O High band [N/2] */
|
|
|
|
const opus_int32 N /* I Number of input samples */
|
|
|
|
);
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/* SCALAR FUNCTIONS */
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
/* Approximation of 128 * log2() (exact inverse of approx 2^() below) */
|
|
|
|
/* Convert input to a log scale */
|
|
|
|
opus_int32 silk_lin2log(
|
|
|
|
const opus_int32 inLin /* I input in linear scale */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Approximation of a sigmoid function */
|
|
|
|
opus_int silk_sigm_Q15(
|
|
|
|
opus_int in_Q5 /* I */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Approximation of 2^() (exact inverse of approx log2() above) */
|
|
|
|
/* Convert input to a linear scale */
|
|
|
|
opus_int32 silk_log2lin(
|
|
|
|
const opus_int32 inLog_Q7 /* I input on log scale */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Compute number of bits to right shift the sum of squares of a vector */
|
|
|
|
/* of int16s to make it fit in an int32 */
|
|
|
|
void silk_sum_sqr_shift(
|
|
|
|
opus_int32 *energy, /* O Energy of x, after shifting to the right */
|
|
|
|
opus_int *shift, /* O Number of bits right shift applied to energy */
|
|
|
|
const opus_int16 *x, /* I Input vector */
|
|
|
|
opus_int len /* I Length of input vector */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Calculates the reflection coefficients from the correlation sequence */
|
|
|
|
/* Faster than schur64(), but much less accurate. */
|
|
|
|
/* uses SMLAWB(), requiring armv5E and higher. */
|
|
|
|
opus_int32 silk_schur( /* O Returns residual energy */
|
|
|
|
opus_int16 *rc_Q15, /* O reflection coefficients [order] Q15 */
|
|
|
|
const opus_int32 *c, /* I correlations [order+1] */
|
|
|
|
const opus_int32 order /* I prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Calculates the reflection coefficients from the correlation sequence */
|
|
|
|
/* Slower than schur(), but more accurate. */
|
|
|
|
/* Uses SMULL(), available on armv4 */
|
|
|
|
opus_int32 silk_schur64( /* O returns residual energy */
|
|
|
|
opus_int32 rc_Q16[], /* O Reflection coefficients [order] Q16 */
|
|
|
|
const opus_int32 c[], /* I Correlations [order+1] */
|
|
|
|
opus_int32 order /* I Prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Step up function, converts reflection coefficients to prediction coefficients */
|
|
|
|
void silk_k2a(
|
|
|
|
opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
|
|
|
|
const opus_int16 *rc_Q15, /* I Reflection coefficients [order] Q15 */
|
|
|
|
const opus_int32 order /* I Prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Step up function, converts reflection coefficients to prediction coefficients */
|
|
|
|
void silk_k2a_Q16(
|
|
|
|
opus_int32 *A_Q24, /* O Prediction coefficients [order] Q24 */
|
|
|
|
const opus_int32 *rc_Q16, /* I Reflection coefficients [order] Q16 */
|
|
|
|
const opus_int32 order /* I Prediction order */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Apply sine window to signal vector. */
|
|
|
|
/* Window types: */
|
|
|
|
/* 1 -> sine window from 0 to pi/2 */
|
|
|
|
/* 2 -> sine window from pi/2 to pi */
|
|
|
|
/* every other sample of window is linearly interpolated, for speed */
|
|
|
|
void silk_apply_sine_window(
|
|
|
|
opus_int16 px_win[], /* O Pointer to windowed signal */
|
|
|
|
const opus_int16 px[], /* I Pointer to input signal */
|
|
|
|
const opus_int win_type, /* I Selects a window type */
|
|
|
|
const opus_int length /* I Window length, multiple of 4 */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Compute autocorrelation */
|
|
|
|
void silk_autocorr(
|
|
|
|
opus_int32 *results, /* O Result (length correlationCount) */
|
|
|
|
opus_int *scale, /* O Scaling of the correlation vector */
|
|
|
|
const opus_int16 *inputData, /* I Input data to correlate */
|
|
|
|
const opus_int inputDataSize, /* I Length of input */
|
2013-12-21 14:40:43 +01:00
|
|
|
const opus_int correlationCount, /* I Number of correlation taps to compute */
|
|
|
|
int arch /* I Run-time architecture */
|
2013-02-16 09:23:32 +01:00
|
|
|
);
|
|
|
|
|
|
|
|
void silk_decode_pitch(
|
|
|
|
opus_int16 lagIndex, /* I */
|
|
|
|
opus_int8 contourIndex, /* O */
|
|
|
|
opus_int pitch_lags[], /* O 4 pitch values */
|
|
|
|
const opus_int Fs_kHz, /* I sampling frequency (kHz) */
|
|
|
|
const opus_int nb_subfr /* I number of sub frames */
|
|
|
|
);
|
|
|
|
|
|
|
|
opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0 voiced, 1 unvoiced */
|
|
|
|
const opus_int16 *frame, /* I Signal of length PE_FRAME_LENGTH_MS*Fs_kHz */
|
|
|
|
opus_int *pitch_out, /* O 4 pitch lag values */
|
|
|
|
opus_int16 *lagIndex, /* O Lag Index */
|
|
|
|
opus_int8 *contourIndex, /* O Pitch contour Index */
|
|
|
|
opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
|
|
|
|
opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
|
|
|
|
const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
|
2013-12-21 14:40:43 +01:00
|
|
|
const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
|
2013-02-16 09:23:32 +01:00
|
|
|
const opus_int Fs_kHz, /* I Sample frequency (kHz) */
|
|
|
|
const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
|
2013-12-21 14:40:43 +01:00
|
|
|
const opus_int nb_subfr, /* I number of 5 ms subframes */
|
|
|
|
int arch /* I Run-time architecture */
|
2013-02-16 09:23:32 +01:00
|
|
|
);
|
|
|
|
|
|
|
|
/* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
|
|
|
|
/* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
|
|
|
|
void silk_A2NLSF(
|
|
|
|
opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
|
|
|
|
opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
|
|
|
|
const opus_int d /* I Filter order (must be even) */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* compute whitening filter coefficients from normalized line spectral frequencies */
|
|
|
|
void silk_NLSF2A(
|
|
|
|
opus_int16 *a_Q12, /* O monic whitening filter coefficients in Q12, [ d ] */
|
|
|
|
const opus_int16 *NLSF, /* I normalized line spectral frequencies in Q15, [ d ] */
|
|
|
|
const opus_int d /* I filter order (should be even) */
|
|
|
|
);
|
|
|
|
|
|
|
|
void silk_insertion_sort_increasing(
|
|
|
|
opus_int32 *a, /* I/O Unsorted / Sorted vector */
|
|
|
|
opus_int *idx, /* O Index vector for the sorted elements */
|
|
|
|
const opus_int L, /* I Vector length */
|
|
|
|
const opus_int K /* I Number of correctly sorted positions */
|
|
|
|
);
|
|
|
|
|
|
|
|
void silk_insertion_sort_decreasing_int16(
|
|
|
|
opus_int16 *a, /* I/O Unsorted / Sorted vector */
|
|
|
|
opus_int *idx, /* O Index vector for the sorted elements */
|
|
|
|
const opus_int L, /* I Vector length */
|
|
|
|
const opus_int K /* I Number of correctly sorted positions */
|
|
|
|
);
|
|
|
|
|
|
|
|
void silk_insertion_sort_increasing_all_values_int16(
|
|
|
|
opus_int16 *a, /* I/O Unsorted / Sorted vector */
|
|
|
|
const opus_int L /* I Vector length */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* NLSF stabilizer, for a single input data vector */
|
|
|
|
void silk_NLSF_stabilize(
|
|
|
|
opus_int16 *NLSF_Q15, /* I/O Unstable/stabilized normalized LSF vector in Q15 [L] */
|
|
|
|
const opus_int16 *NDeltaMin_Q15, /* I Min distance vector, NDeltaMin_Q15[L] must be >= 1 [L+1] */
|
|
|
|
const opus_int L /* I Number of NLSF parameters in the input vector */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Laroia low complexity NLSF weights */
|
|
|
|
void silk_NLSF_VQ_weights_laroia(
|
|
|
|
opus_int16 *pNLSFW_Q_OUT, /* O Pointer to input vector weights [D] */
|
|
|
|
const opus_int16 *pNLSF_Q15, /* I Pointer to input vector [D] */
|
|
|
|
const opus_int D /* I Input vector dimension (even) */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Compute reflection coefficients from input signal */
|
|
|
|
void silk_burg_modified(
|
|
|
|
opus_int32 *res_nrg, /* O Residual energy */
|
|
|
|
opus_int *res_nrg_Q, /* O Residual energy Q value */
|
|
|
|
opus_int32 A_Q16[], /* O Prediction coefficients (length order) */
|
|
|
|
const opus_int16 x[], /* I Input signal, length: nb_subfr * ( D + subfr_length ) */
|
|
|
|
const opus_int32 minInvGain_Q30, /* I Inverse of max prediction gain */
|
|
|
|
const opus_int subfr_length, /* I Input signal subframe length (incl. D preceding samples) */
|
|
|
|
const opus_int nb_subfr, /* I Number of subframes stacked in x */
|
2013-12-21 14:40:43 +01:00
|
|
|
const opus_int D, /* I Order */
|
|
|
|
int arch /* I Run-time architecture */
|
2013-02-16 09:23:32 +01:00
|
|
|
);
|
|
|
|
|
|
|
|
/* Copy and multiply a vector by a constant */
|
|
|
|
void silk_scale_copy_vector16(
|
|
|
|
opus_int16 *data_out,
|
|
|
|
const opus_int16 *data_in,
|
|
|
|
opus_int32 gain_Q16, /* I Gain in Q16 */
|
|
|
|
const opus_int dataSize /* I Length */
|
|
|
|
);
|
|
|
|
|
|
|
|
/* Some for the LTP related function requires Q26 to work.*/
|
|
|
|
void silk_scale_vector32_Q26_lshift_18(
|
|
|
|
opus_int32 *data1, /* I/O Q0/Q18 */
|
|
|
|
opus_int32 gain_Q26, /* I Q26 */
|
|
|
|
opus_int dataSize /* I length */
|
|
|
|
);
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/* INLINE ARM MATH */
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
/* return sum( inVec1[i] * inVec2[i] ) */
|
|
|
|
opus_int32 silk_inner_prod_aligned(
|
|
|
|
const opus_int16 *const inVec1, /* I input vector 1 */
|
|
|
|
const opus_int16 *const inVec2, /* I input vector 2 */
|
|
|
|
const opus_int len /* I vector lengths */
|
|
|
|
);
|
|
|
|
|
|
|
|
opus_int32 silk_inner_prod_aligned_scale(
|
|
|
|
const opus_int16 *const inVec1, /* I input vector 1 */
|
|
|
|
const opus_int16 *const inVec2, /* I input vector 2 */
|
|
|
|
const opus_int scale, /* I number of bits to shift */
|
|
|
|
const opus_int len /* I vector lengths */
|
|
|
|
);
|
|
|
|
|
|
|
|
opus_int64 silk_inner_prod16_aligned_64(
|
|
|
|
const opus_int16 *inVec1, /* I input vector 1 */
|
|
|
|
const opus_int16 *inVec2, /* I input vector 2 */
|
|
|
|
const opus_int len /* I vector lengths */
|
|
|
|
);
|
|
|
|
|
|
|
|
/********************************************************************/
|
|
|
|
/* MACROS */
|
|
|
|
/********************************************************************/
|
|
|
|
|
|
|
|
/* Rotate a32 right by 'rot' bits. Negative rot values result in rotating
|
|
|
|
left. Output is 32bit int.
|
|
|
|
Note: contemporary compilers recognize the C expression below and
|
2013-12-21 14:40:43 +01:00
|
|
|
compile it into a 'ror' instruction if available. No need for OPUS_INLINE ASM! */
|
|
|
|
static OPUS_INLINE opus_int32 silk_ROR32( opus_int32 a32, opus_int rot )
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
opus_uint32 x = (opus_uint32) a32;
|
|
|
|
opus_uint32 r = (opus_uint32) rot;
|
|
|
|
opus_uint32 m = (opus_uint32) -rot;
|
|
|
|
if( rot == 0 ) {
|
|
|
|
return a32;
|
|
|
|
} else if( rot < 0 ) {
|
|
|
|
return (opus_int32) ((x << m) | (x >> (32 - m)));
|
|
|
|
} else {
|
|
|
|
return (opus_int32) ((x << (32 - r)) | (x >> r));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Allocate opus_int16 aligned to 4-byte memory address */
|
|
|
|
#if EMBEDDED_ARM
|
|
|
|
#define silk_DWORD_ALIGN __attribute__((aligned(4)))
|
|
|
|
#else
|
|
|
|
#define silk_DWORD_ALIGN
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Useful Macros that can be adjusted to other platforms */
|
|
|
|
#define silk_memcpy(dest, src, size) memcpy((dest), (src), (size))
|
|
|
|
#define silk_memset(dest, src, size) memset((dest), (src), (size))
|
|
|
|
#define silk_memmove(dest, src, size) memmove((dest), (src), (size))
|
|
|
|
|
|
|
|
/* Fixed point macros */
|
|
|
|
|
|
|
|
/* (a32 * b32) output have to be 32bit int */
|
|
|
|
#define silk_MUL(a32, b32) ((a32) * (b32))
|
|
|
|
|
|
|
|
/* (a32 * b32) output have to be 32bit uint */
|
|
|
|
#define silk_MUL_uint(a32, b32) silk_MUL(a32, b32)
|
|
|
|
|
|
|
|
/* a32 + (b32 * c32) output have to be 32bit int */
|
|
|
|
#define silk_MLA(a32, b32, c32) silk_ADD32((a32),((b32) * (c32)))
|
|
|
|
|
|
|
|
/* a32 + (b32 * c32) output have to be 32bit uint */
|
|
|
|
#define silk_MLA_uint(a32, b32, c32) silk_MLA(a32, b32, c32)
|
|
|
|
|
|
|
|
/* ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
|
|
|
|
#define silk_SMULTT(a32, b32) (((a32) >> 16) * ((b32) >> 16))
|
|
|
|
|
|
|
|
/* a32 + ((a32 >> 16) * (b32 >> 16)) output have to be 32bit int */
|
|
|
|
#define silk_SMLATT(a32, b32, c32) silk_ADD32((a32),((b32) >> 16) * ((c32) >> 16))
|
|
|
|
|
|
|
|
#define silk_SMLALBB(a64, b16, c16) silk_ADD64((a64),(opus_int64)((opus_int32)(b16) * (opus_int32)(c16)))
|
|
|
|
|
|
|
|
/* (a32 * b32) */
|
|
|
|
#define silk_SMULL(a32, b32) ((opus_int64)(a32) * /*(opus_int64)*/(b32))
|
|
|
|
|
|
|
|
/* Adds two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
|
|
|
|
(just standard two's complement implementation-specific behaviour) */
|
|
|
|
#define silk_ADD32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) + (opus_uint32)(b)))
|
|
|
|
/* Subtractss two signed 32-bit values in a way that can overflow, while not relying on undefined behaviour
|
|
|
|
(just standard two's complement implementation-specific behaviour) */
|
|
|
|
#define silk_SUB32_ovflw(a, b) ((opus_int32)((opus_uint32)(a) - (opus_uint32)(b)))
|
|
|
|
|
|
|
|
/* Multiply-accumulate macros that allow overflow in the addition (ie, no asserts in debug mode) */
|
|
|
|
#define silk_MLA_ovflw(a32, b32, c32) silk_ADD32_ovflw((a32), (opus_uint32)(b32) * (opus_uint32)(c32))
|
|
|
|
#define silk_SMLABB_ovflw(a32, b32, c32) (silk_ADD32_ovflw((a32) , ((opus_int32)((opus_int16)(b32))) * (opus_int32)((opus_int16)(c32))))
|
|
|
|
|
|
|
|
#define silk_DIV32_16(a32, b16) ((opus_int32)((a32) / (b16)))
|
|
|
|
#define silk_DIV32(a32, b32) ((opus_int32)((a32) / (b32)))
|
|
|
|
|
|
|
|
/* These macros enables checking for overflow in silk_API_Debug.h*/
|
|
|
|
#define silk_ADD16(a, b) ((a) + (b))
|
|
|
|
#define silk_ADD32(a, b) ((a) + (b))
|
|
|
|
#define silk_ADD64(a, b) ((a) + (b))
|
|
|
|
|
|
|
|
#define silk_SUB16(a, b) ((a) - (b))
|
|
|
|
#define silk_SUB32(a, b) ((a) - (b))
|
|
|
|
#define silk_SUB64(a, b) ((a) - (b))
|
|
|
|
|
|
|
|
#define silk_SAT8(a) ((a) > silk_int8_MAX ? silk_int8_MAX : \
|
|
|
|
((a) < silk_int8_MIN ? silk_int8_MIN : (a)))
|
|
|
|
#define silk_SAT16(a) ((a) > silk_int16_MAX ? silk_int16_MAX : \
|
|
|
|
((a) < silk_int16_MIN ? silk_int16_MIN : (a)))
|
|
|
|
#define silk_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : \
|
|
|
|
((a) < silk_int32_MIN ? silk_int32_MIN : (a)))
|
|
|
|
|
|
|
|
#define silk_CHECK_FIT8(a) (a)
|
|
|
|
#define silk_CHECK_FIT16(a) (a)
|
|
|
|
#define silk_CHECK_FIT32(a) (a)
|
|
|
|
|
|
|
|
#define silk_ADD_SAT16(a, b) (opus_int16)silk_SAT16( silk_ADD32( (opus_int32)(a), (b) ) )
|
|
|
|
#define silk_ADD_SAT64(a, b) ((((a) + (b)) & 0x8000000000000000LL) == 0 ? \
|
|
|
|
((((a) & (b)) & 0x8000000000000000LL) != 0 ? silk_int64_MIN : (a)+(b)) : \
|
|
|
|
((((a) | (b)) & 0x8000000000000000LL) == 0 ? silk_int64_MAX : (a)+(b)) )
|
|
|
|
|
|
|
|
#define silk_SUB_SAT16(a, b) (opus_int16)silk_SAT16( silk_SUB32( (opus_int32)(a), (b) ) )
|
|
|
|
#define silk_SUB_SAT64(a, b) ((((a)-(b)) & 0x8000000000000000LL) == 0 ? \
|
|
|
|
(( (a) & ((b)^0x8000000000000000LL) & 0x8000000000000000LL) ? silk_int64_MIN : (a)-(b)) : \
|
|
|
|
((((a)^0x8000000000000000LL) & (b) & 0x8000000000000000LL) ? silk_int64_MAX : (a)-(b)) )
|
|
|
|
|
|
|
|
/* Saturation for positive input values */
|
|
|
|
#define silk_POS_SAT32(a) ((a) > silk_int32_MAX ? silk_int32_MAX : (a))
|
|
|
|
|
|
|
|
/* Add with saturation for positive input values */
|
|
|
|
#define silk_ADD_POS_SAT8(a, b) ((((a)+(b)) & 0x80) ? silk_int8_MAX : ((a)+(b)))
|
|
|
|
#define silk_ADD_POS_SAT16(a, b) ((((a)+(b)) & 0x8000) ? silk_int16_MAX : ((a)+(b)))
|
|
|
|
#define silk_ADD_POS_SAT32(a, b) ((((a)+(b)) & 0x80000000) ? silk_int32_MAX : ((a)+(b)))
|
|
|
|
#define silk_ADD_POS_SAT64(a, b) ((((a)+(b)) & 0x8000000000000000LL) ? silk_int64_MAX : ((a)+(b)))
|
|
|
|
|
|
|
|
#define silk_LSHIFT8(a, shift) ((opus_int8)((opus_uint8)(a)<<(shift))) /* shift >= 0, shift < 8 */
|
|
|
|
#define silk_LSHIFT16(a, shift) ((opus_int16)((opus_uint16)(a)<<(shift))) /* shift >= 0, shift < 16 */
|
|
|
|
#define silk_LSHIFT32(a, shift) ((opus_int32)((opus_uint32)(a)<<(shift))) /* shift >= 0, shift < 32 */
|
|
|
|
#define silk_LSHIFT64(a, shift) ((opus_int64)((opus_uint64)(a)<<(shift))) /* shift >= 0, shift < 64 */
|
|
|
|
#define silk_LSHIFT(a, shift) silk_LSHIFT32(a, shift) /* shift >= 0, shift < 32 */
|
|
|
|
|
|
|
|
#define silk_RSHIFT8(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 8 */
|
|
|
|
#define silk_RSHIFT16(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 16 */
|
|
|
|
#define silk_RSHIFT32(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 32 */
|
|
|
|
#define silk_RSHIFT64(a, shift) ((a)>>(shift)) /* shift >= 0, shift < 64 */
|
|
|
|
#define silk_RSHIFT(a, shift) silk_RSHIFT32(a, shift) /* shift >= 0, shift < 32 */
|
|
|
|
|
|
|
|
/* saturates before shifting */
|
|
|
|
#define silk_LSHIFT_SAT32(a, shift) (silk_LSHIFT32( silk_LIMIT( (a), silk_RSHIFT32( silk_int32_MIN, (shift) ), \
|
|
|
|
silk_RSHIFT32( silk_int32_MAX, (shift) ) ), (shift) ))
|
|
|
|
|
|
|
|
#define silk_LSHIFT_ovflw(a, shift) ((opus_int32)((opus_uint32)(a) << (shift))) /* shift >= 0, allowed to overflow */
|
|
|
|
#define silk_LSHIFT_uint(a, shift) ((a) << (shift)) /* shift >= 0 */
|
|
|
|
#define silk_RSHIFT_uint(a, shift) ((a) >> (shift)) /* shift >= 0 */
|
|
|
|
|
|
|
|
#define silk_ADD_LSHIFT(a, b, shift) ((a) + silk_LSHIFT((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_ADD_LSHIFT32(a, b, shift) silk_ADD32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_ADD_LSHIFT_uint(a, b, shift) ((a) + silk_LSHIFT_uint((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_ADD_RSHIFT(a, b, shift) ((a) + silk_RSHIFT((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_ADD_RSHIFT32(a, b, shift) silk_ADD32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_ADD_RSHIFT_uint(a, b, shift) ((a) + silk_RSHIFT_uint((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_SUB_LSHIFT32(a, b, shift) silk_SUB32((a), silk_LSHIFT32((b), (shift))) /* shift >= 0 */
|
|
|
|
#define silk_SUB_RSHIFT32(a, b, shift) silk_SUB32((a), silk_RSHIFT32((b), (shift))) /* shift >= 0 */
|
|
|
|
|
|
|
|
/* Requires that shift > 0 */
|
|
|
|
#define silk_RSHIFT_ROUND(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
|
|
|
|
#define silk_RSHIFT_ROUND64(a, shift) ((shift) == 1 ? ((a) >> 1) + ((a) & 1) : (((a) >> ((shift) - 1)) + 1) >> 1)
|
|
|
|
|
|
|
|
/* Number of rightshift required to fit the multiplication */
|
|
|
|
#define silk_NSHIFT_MUL_32_32(a, b) ( -(31- (32-silk_CLZ32(silk_abs(a)) + (32-silk_CLZ32(silk_abs(b))))) )
|
|
|
|
#define silk_NSHIFT_MUL_16_16(a, b) ( -(15- (16-silk_CLZ16(silk_abs(a)) + (16-silk_CLZ16(silk_abs(b))))) )
|
|
|
|
|
|
|
|
|
|
|
|
#define silk_min(a, b) (((a) < (b)) ? (a) : (b))
|
|
|
|
#define silk_max(a, b) (((a) > (b)) ? (a) : (b))
|
|
|
|
|
|
|
|
/* Macro to convert floating-point constants to fixed-point */
|
|
|
|
#define SILK_FIX_CONST( C, Q ) ((opus_int32)((C) * ((opus_int64)1 << (Q)) + 0.5))
|
|
|
|
|
|
|
|
/* silk_min() versions with typecast in the function call */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int silk_min_int(opus_int a, opus_int b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) < (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int16 silk_min_16(opus_int16 a, opus_int16 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) < (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int32 silk_min_32(opus_int32 a, opus_int32 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) < (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int64 silk_min_64(opus_int64 a, opus_int64 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) < (b)) ? (a) : (b));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* silk_min() versions with typecast in the function call */
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int silk_max_int(opus_int a, opus_int b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) > (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int16 silk_max_16(opus_int16 a, opus_int16 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) > (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int32 silk_max_32(opus_int32 a, opus_int32 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) > (b)) ? (a) : (b));
|
|
|
|
}
|
2013-12-21 14:40:43 +01:00
|
|
|
static OPUS_INLINE opus_int64 silk_max_64(opus_int64 a, opus_int64 b)
|
2013-02-16 09:23:32 +01:00
|
|
|
{
|
|
|
|
return (((a) > (b)) ? (a) : (b));
|
|
|
|
}
|
|
|
|
|
|
|
|
#define silk_LIMIT( a, limit1, limit2) ((limit1) > (limit2) ? ((a) > (limit1) ? (limit1) : ((a) < (limit2) ? (limit2) : (a))) \
|
|
|
|
: ((a) > (limit2) ? (limit2) : ((a) < (limit1) ? (limit1) : (a))))
|
|
|
|
|
|
|
|
#define silk_LIMIT_int silk_LIMIT
|
|
|
|
#define silk_LIMIT_16 silk_LIMIT
|
|
|
|
#define silk_LIMIT_32 silk_LIMIT
|
|
|
|
|
|
|
|
#define silk_abs(a) (((a) > 0) ? (a) : -(a)) /* Be careful, silk_abs returns wrong when input equals to silk_intXX_MIN */
|
|
|
|
#define silk_abs_int(a) (((a) ^ ((a) >> (8 * sizeof(a) - 1))) - ((a) >> (8 * sizeof(a) - 1)))
|
|
|
|
#define silk_abs_int32(a) (((a) ^ ((a) >> 31)) - ((a) >> 31))
|
|
|
|
#define silk_abs_int64(a) (((a) > 0) ? (a) : -(a))
|
|
|
|
|
|
|
|
#define silk_sign(a) ((a) > 0 ? 1 : ( (a) < 0 ? -1 : 0 ))
|
|
|
|
|
|
|
|
/* PSEUDO-RANDOM GENERATOR */
|
|
|
|
/* Make sure to store the result as the seed for the next call (also in between */
|
|
|
|
/* frames), otherwise result won't be random at all. When only using some of the */
|
|
|
|
/* bits, take the most significant bits by right-shifting. */
|
|
|
|
#define silk_RAND(seed) (silk_MLA_ovflw(907633515, (seed), 196314165))
|
|
|
|
|
|
|
|
/* Add some multiplication functions that can be easily mapped to ARM. */
|
|
|
|
|
|
|
|
/* silk_SMMUL: Signed top word multiply.
|
|
|
|
ARMv6 2 instruction cycles.
|
|
|
|
ARMv3M+ 3 instruction cycles. use SMULL and ignore LSB registers.(except xM)*/
|
|
|
|
/*#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT(silk_SMLAL(silk_SMULWB((a32), (b32)), (a32), silk_RSHIFT_ROUND((b32), 16)), 16)*/
|
|
|
|
/* the following seems faster on x86 */
|
|
|
|
#define silk_SMMUL(a32, b32) (opus_int32)silk_RSHIFT64(silk_SMULL((a32), (b32)), 32)
|
|
|
|
|
|
|
|
#include "Inlines.h"
|
|
|
|
#include "MacroCount.h"
|
|
|
|
#include "MacroDebug.h"
|
|
|
|
|
2013-12-21 14:40:43 +01:00
|
|
|
#ifdef OPUS_ARM_INLINE_ASM
|
|
|
|
#include "arm/SigProc_FIX_armv4.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef OPUS_ARM_INLINE_EDSP
|
|
|
|
#include "arm/SigProc_FIX_armv5e.h"
|
|
|
|
#endif
|
|
|
|
|
2013-02-16 09:23:32 +01:00
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* SILK_SIGPROC_FIX_H */
|