LearnedBot/memory.py

65 lines
1.7 KiB
Python
Raw Normal View History

import csv
import json
from math import sqrt
import re
WORD_LENGTH_THRESHOLD = 4
class RowDecoder(json.JSONDecoder):
def decode(self, s):
db = json.JSONDecoder.decode(self, s)
return [{**obj, 'index': set(obj['index'])} for obj in db]
class RowEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, set):
return list(obj)
else:
return json.JSONEncoder.default(obj)
def keepOnlyAlphaChars(word):
return ''.join([c for c in word if c.isalpha()])
def index(text):
words = re.split('\s', text)
normalized_words = [keepOnlyAlphaChars(word).lower() for word in words]
important_words = set([w for w in normalized_words
if len(w) >= WORD_LENGTH_THRESHOLD])
return important_words
def insert(db, row):
db.append({'title': row[0], 'quote': row[1], 'index': index(row[1])})
def build_db(inputCSV):
db = []
with open(inputCSV, 'r') as file:
csv_reader = csv.reader(file, delimiter=',')
data = False
for row in csv_reader:
if data:
insert(db, row)
else:
data = True
return db
def save_db(db, outputJSON):
with open(outputJSON, 'w') as file:
json.dump(db, file, cls=RowEncoder)
def open_db(filePath):
with open(filePath, 'r') as file:
return json.load(file, cls=RowDecoder)
"""
We define a similarity measure on sets which counts the number of elements
they have in common
"""
def scalar(a, b):
return len(a.intersection(b))/sqrt(len(a)*len(b))
def find_best_quote(db, user_input):
indexed_input = index(user_input)
max_score = None
for entry in db:
score = scalar(indexed_input, entry